

Abridged Preface to First Edition

The Importance of Software

Today, in almost every piece of machinery or electrical equipment, there is a small
computer. We may not be aware of its presence but, more often than not, machines
are controlled by a computer system, and computers are controlled by programs.
Even if a program is hard-wired into a system, so that it cannot be changed, it
probably started life as software. Thus you can see how software influences much
of our daily activity. When software goes wrong, its effects can be widespread and
can wreak havoc in situations that most people would not even associate with
computers.

Of course, some computer software is used in situations that are so experimental as
to never be repeated. Such ‘one off ’ instances really lie outside the realms of
Computing Science; it being expected that those programs might well be changed
after each run or even scrapped altogether once a single result has been obtained.
We are concerned with the production of more general-purpose software — software
that will be run with so many different data sets, that we can sensibly regard them
as being infinite in number.

It is therefore very important that the software be ‘right’ — that it never gives
‘wrong’ answers. In most situations1, it is usually better to get no answer at all
than one which is ‘incorrect’.

The classical approach to the task of trying to ensure that programs were indeed
‘correct’ is to test them. This involves writing the program, running it on sample
data to generate results, and then checking these results to see if they are as
expected. But the number of possible data values is so large that the time needed to
perform all the program runs is likely to be considerable (hours, days, or even
years), and then all the results need to be checked by some agreed method. This is
clearly not practical; all that such an exercise might demonstrate is that the program
fails, but only if we were fortunate enough to find a suitably discerning piece of
data.
1 The only cases which seem to go contrary to this bold statement are those when an answer might be
regarded as ‘inaccurate’ rather than ‘wrong’. In these instances, the specification of what is required
— or what ‘will do’ — must be more carefully defined.

A half-way house in the testing approach is to partition the possible data into
classes and test a small number of values from each class. This is better but is still
no guarantee of correctness since it depends on the assumption that nothing
‘unusual’ happens within each class, it therefore merely passes on the responsibility
to smaller pieces of program which are presumed to be right — but that is where
we came in.

Before any code is written, a programmer needs to know why the software is needed
and what it is required to do. As will be illustrated in Chapter 0, the lack of a
suitable statement of requirements can cause all sorts of problems and is often very
expensive. We argue that what is needed is a formal statement of requirements.
Even if a completely formal development process is not undertaken, such a
description can be used to good effect. The main potential benefits are:

(a) to fully understand the problem to be solved.
If we cannot describe the problem, then we are unlikely to understand it
adequately enough to be able to solve it2.

(b) as the basis of testing.
From a proper problem description we should be able to devise acceptance
tests — even before programming has begun. We can construct a decision
procedure, but this will often only be a partial decision procedure — it will
tell us either that the software is wrong or that we don’t know whether it is
right or wrong!

(c) to use in a formal verification.
We can combine the specification and the program (once written) into a
correctness theorem, the validity of which can then be investigated. This
requires us to perform a mathematical proof and uncovers the fact that
proofs are difficult to perform — even for mathematicians, and most
programmers are not mathematicians.

(d) as a basis for the construction of software.
Instead of looking at the specification, writing a program, and then seeing
if it is ‘correct’ relative to the specification, it is possible to transform and
refine the specification into a form that is executable (viewed as an
expression within a conventional high-level procedural language). This
approach is logically equivalent to retrospective verification but does not
allow the existence of incorrect programs, which would be wasteful of
programmer effort. This constructive approach can be presented so as to be
more akin to the evaluation of an expression, and to algebraic
manipulation, rather than the discharging of logical assertions by proofs.

2 We can use incomplete specifications which incorporate appropriate use of approximate answers
(to within specified limits!). Such specifications do reflect knowledge of the problem; in particular,
the extent to which (in-)accurate results are important. Lack of vital information required in the
program will cause the construction process to halt — and for the necessary information to be supplied
— before we can continue. So, we can start with an incomplete specification and augment it as we
proceed. Providing that no contradictory information is added, we do not have to undo any work
already done.

Abridged Preface to First Edition vi

Formal Methods

The raison d’être of formal methods is to support reasoning: reasoning about
hardware and software, reasoning about their properties and about their construction.
Of particular importance is the ability to reason, mathematically, about properties
that are required for all values from unmanageably large data sets.

The real reason why formal methods are not used as widely as they could be is a
general lack of mathematical expertise; hence the lack of confidence and the
consequential reluctance to use mathematics even when to do so could be most
beneficial. In our presentation, most reasoning is carried out by the evaluation of
appropriate expressions; indeed, most mathematical entities are treated in the same
way as data values within a programming language. We hope that this will make
the mathematical concepts more acceptable to the software engineering community.

Although mathematics is unavoidable, we shall only use it as and when it is needed
and not merely in order to make the processes look more complicated.

Mathematics will be used first to give descriptions and then to perform calculations
upon these descriptions. The descriptions will almost always be in the form of
expressions — expressions with which we formulate the specifications (and
requirements) of software, characterise properties of data types, and define the
programming constructs used. Performing algebra on these expressions allows us
to ‘mechanise’ reasoning and to manipulate specifications and programs.

The degree of formality found within programming languages appears acceptable to
software engineers (they appreciate why it is needed there) and presenting other
aspects of software design in a similar way seems also to make the necessary
mathematics more palatable.

Just as in other areas of mathematics, although there are strict sets of rules within
which we must work, the solving of problems and the creation of systems are not
prescriptive processes. We still need to make choices, to perform certain so-called
‘refinement’ steps. Indeed, the synthesis process is effectively a mixture of
transformations and refinements, which we call transfinement.

vii Abridged Preface to First Edition

Coverage

All software, all programs, include both calculations and communications, and we
consider these two aspects separately. It is easier to study each in isolation and then
combine them later. Here: the notion of ‘calculation’ must be viewed sufficiently
broadly to include any situation where the answer is computed by evaluating some
function of the input. These functions are more powerful than functions that can be
coded directly in common programming languages and encompass such tasks as
sorting, searching, and the checking for the presence of certain properties within
data. Similarly, under ‘communications’ we include consideration of states and
state changes, as well as the more predictable actions associated with input and
output. In this introductory text, we shall concentrate on the computational aspects
of software and relegate communication issues to one small section.

In a more general scenario, when the software is embedded within a system which
provides or controls a ‘service’, we have to consider the requirements of such a
system — expressed in terms of externally observable changes. The software
requirements must therefore be expressed relative to other components of the
system. Here we are only concerned with software; the design of other components
is the concern of engineers from some other discipline (it is not software
engineering). We don’t presume any expertise in such areas and reciprocally, as is
apparent from experience, we suggest that serious programming should be left to
professional software engineers.

It is most important to recognise that we only claim properties of our derived
software designs. Since all software resides within some other system we cannot
make any absolute claims about the entire system per se; any claims about the
software are conditional upon conformance of other components to their requirements.

So we do not attempt to venture outside the field of software engineering. This
book is primarily concerned with the construction of correct algorithms but in the
final chapter we briefly discuss how the relationship between software
requirements/specifications to other (hardware?) components may be represented.
(This is all part of an overall system design.) The appendix contains a compendium
of associated mathematical rules for the manipulation of software descriptions.

Abridged Preface to First Edition viii

Approach

We regard program construction as a form of problem solving and present a basic
framework into which new problem-solving tactics and strategies can be slotted as
and when they become available. We concentrate on fundamentals and include only
the simplest (and most widely applicable) tactics. Then, having investigated some
problems from first principles we shall demonstrate how they may be solved more
easily — and more immediately — when they are specified in a more abstract
fashion. Software requirements and specifications should always be given in the
most abstract form possible. This not only makes them simpler to understand but
gives the software engineer more flexibility in the way he designs his
implementation. Such an approach also supports re-use of components that have
been (correctly) constructed earlier.

This is not an Object-Oriented (O-O) approach as such but is consistent with O-O
technologies. The novel feature of O-O methods is the concept of inheritance (of
data types and, closely related, classes) and is of most benefit when seeking to re-
use existing software components. We are primarily concerned with the
construction of software from scratch.

Just as one might study the principles of programming without having to get
embroiled in the specific details of any particular commercially available language
and its compiler, we shall present the essence of specification and design of software
using logic, a program design language and several varieties of (formal) diagrams.
This language being a rational extension and abstraction of proper subsets of other
commonly used languages and notations. As will be gleaned from the text, the
actual notation used is not important; once you can read one notation, it is easy to
re-express the same information in another form.

The approach is unashamedly, and necessarily, formal. Formality is not theory but
is underpinned by theory; theory is given and explained only when necessary.

Audience

The presentation is aimed at those who need to regard the production of programs as
an end in itself. This includes degree-level students of computer science and
software engineering and programmers who have to produce certificated software
— those who might be involved in the production of ‘critical systems’, whatever
‘critical’ means. We treat programming as an intellectual exercise, the context in
which the software is (to be) used only being relevant in as much as it is reflected

in the requirements (or specification) which the software must satisfy.

ix Abridged Preface to First Edition

Capsule Description

The following questions must be addressed:
• Why is the software needed? (requirements)
• What is the software to do? (specification)
• How does the software work? (implementation)

Formal Methods provide a framework in which correct software can be built.

• Software should meet its requirements.
• As part of the system design process,

 its actions must be decided upon and specified.
• The specified actions must then be implemented and controlled.

Ideally, we need a structure in which to apply tactics aimed at ‘transfining’
specifications and requirements into software designs which are known to be correct.
This text focuses on the algorithmic aspects of software; the process of
synthesising a design for a procedural program is presented as a sequence of design
steps. At each stage, we are typically making decisions or adding details necessary
to achieve or maintain the requirements. This is done in such a way as to retain
consistency with the immediately preceding, more abstract, design and prevent the
introduction of errors. We do this by adhering to various rules.

These are rules associated with

• the data types used
• the logic used, and
• the languages used.

John Cooke
Loughborough University
1997

Abridged Preface to First Edition x

Preface to Second Edition

Why a New Edition?
This edition has essentially the same content as the first. We have resisted the
temptation to ‘soup up’ the content and to deviate from our original aim of
providing a basic introduction to formally based software construction. Rather than
drastically change the content, we have tried to address the educational conflict
between providing lots of detail and giving a very general global overview. Many
readers feel the need to have much of the work described in great detail, but others
find such detail overwhelming and a distraction from the broader picture. However,
‘the devil is in the detail’ — all the details must be correct, otherwise all is lost and
we gain nothing.

This edition makes greater use of footnotes to qualify the main text and add detail to
the exposition. This is done in an attempt to avoid too many distractions whilst
trying to be as technically correct as possible.

So, we keep to basics rather than allow ourselves to be tempted to include more
advanced material — even though the topics included may not be those chosen by
others as their starting point.

Readers should still read the preface to the first edition — it is all still relevant. If
you have not already done so, perhaps now is a good time to read it — before
continuing here.

What’s New?
Although the approach is still constructive rather than retrospective (as is the case
with testing or even verification), we do allow for inspiration to be employed
within our formal framework. This not only encompasses ‘checking’, as in the
first edition, but also facilitates the use of ‘eureka’ steps. These effectively start ‘in
the middle’ and requires that we work both backwards, to the problem, and forwards,
to an implementation. At a first glance, this ‘sideways’ technique looks like more
work than simply working in a single direction, however, providing that our
inspiration works, this approach is very specific to the given problem and moves
quickly to a correct design. But here is not the place to tell the full story.

A proper description of the structure of the book, and how the (rest of the) chapters
relate to one another, is given in Chapter 0. However, we ought to say something
here about the more important changes, which the reader can appreciate without
having to delve into the technical material.

In this edition there are more chapters even though some are very small; there is
slightly less detailed working in the text and hence more for the reader to do
between (printed) steps. The technical appendices have been extended, and more
detailed expositions will be placed on the web (www.springeronline.com/uk/1-
85233-820-2) where extra, supplementary, material will be added as and when
requested / required / available.

There are many small changes and a few major structural ones. At the risk of
glossing over some necessary details we aim to ‘get to the plot’ quickly by
including, in Chapter 0, a few brief ‘sketches’ of the entire synthesis process
applied to some simple numerical calculations. However, in order that we can do
the job properly, this must be counter-balanced by a very large Part A
(Preliminaries), which consists of Chapters 1 and 2 and includes details of the
mathematical notions with which the reader should be familiar , but perhaps not the
notations — well, almost, there are a few novel twists — and matters related to
programming.

Chapter 1 is distilled from four original chapters. This can be skimmed at a first
reading, so that the reader is acquainted with its contents, and then relevant sections
studied more fully as and when needed in the sequel. (The experience of each reader
will be different and hence the need for in-depth study will also be different.)

Chapter 2 is the only one which is completely new. It discusses, in outline, how
specifications have been used by others in the construction of software. Although
this too can be skipped on the first reading, it is included (in this position) so that
the reader is aware of some of the aspirations and problems of earlier work on
Formal Methods. This is mainly to provide a basis for comparison with our
constructive approach, but the techniques can also be used in a mutually supportive
fashion.

In programming we certainly support the idea of using sensible (helpful, indicative,
‘meaningful’) names when referring to data items, functions etc. but we have
serious doubts about the particularly undisciplined use of comments. The use of
comments and assertions and their relationship to program correctness is discussed
here and provides more motivation for adopting Formal Methods.

The language Pascal was used to illustrate certain points in the initial chapter of the
first edition. For those who are unfamiliar with that language — or perhaps did not

xii Preface to Second Edition

appreciate its relative unimportance in the overall scheme of the book and felt
threatened by its unfamiliarity — we have chosen, in this edition, to use a generic
block-structured procedural language. Any similarity with a language known to the
reader should provide useful reinforcement. But we shall resist the temptation to
wander away from our central topic of study and stray into a formal definition of its
semantics. Concepts needed within the language will be discussed in appropriate
detail when encountered.

We shall use the same language in the programs constructed as part of our
‘methodology’ (although that is not a term whose use we would encourage).

Chapters 1 and 2 can be speed read by an experienced and ‘mathematically aware’
programmer. Chapter 3, in Part B (Fundamentals), is where the real work starts.

Elsewhere, original chapters have been split up so as to permit clearer focussing on
important topics that warrant individual discussion and further study. Overall, we
aim to compute (correctly derive) programs that perform calculations. Throughout,
we have tried to place more emphasis on the relationship between problem
breakdown and program assembly. Once mastered, the approach can be applied to
‘larger’ problems using bigger building blocks; it is not only, as often perceived,
for ‘programming in the small’.

What this Book is Not About?

This is not a book about Requirements Engineering or about Programming
Languages, even though both of these subjects impinge on what we do here. Those
topics are closely related to software development and are certainly necessary, but
they are not our main concern. And, as already noted, this book is not about
‘Programming’ — coding — or Data Structures.

Although the book has evolved from taught courses (selected chapters), it is not
really a textbook per se. (Certainly some exercises are included, and there is a lot of
detailed working; but this is to reinforce and emphasize the necessity of paying
attention to detail, both in the theory and as the basis of mathematically based
software engineering tools.) Neither is it a monograph; it is more of an explication
— an extended explanation. We shall try to react to questions received and add extra
material in response to readers’ needs via the web.

Preface to Second Edition xiii

Acknowledgements

The bulk of the material within this book has been distilled from courses presented
by the author and his colleagues over a period of some 20 years. During this period
of time, researchers and teachers have all been influenced (taught!) by the work of
others — sometimes consciously, but often not. Notwithstanding the inevitable
omissions from any list, we include, within the bibliography at the end of the
book, the more obvious textbooks which have helped form and transform our
understanding of Formal Methods. Collectively we share in the ongoing search for
better ways of presenting, explaining, and teaching the most recent developments in
Formal Methods that have matured sufficiently to warrant wider exposure. (Of
course, there are also very many research papers, but to cite any of them would not
be appropriate in a basic introduction such as this.)

Regrettably, many of these books are no longer in print, a tragedy of the need for
publishers to pander to popular needs for trendy IT books rather than support the
Science of Computing or the Engineering of Software. But they all have
something to offer, even if you have to borrow a copy from a library.

Interactions, formal and informal, direct and electronic, with colleagues within
BCS-FACS (the BCS specialist group in Formal Aspects of Computing Science)
and fellow members of the editorial board of Formal Aspects of Computing are
gratefully acknowledged.

Again thanks (and apologies) are due the students who have suffered our attempts to
present a topic whilst it was still in its academic infancy. Particular thanks go to
my friend and colleague Roger Stone.

The first edition was written largely during a period of study leave from
Loughborough University.

I am also indebted to Steve Schuman and Tim Denvir who assisted in honing the
first edition, to Mark Withall who reported more errors (typos?) than anyone else,
and to Rosie Kemp, Helen Callaghan, Jenny Wolkowicki (and others whose names
I do not know) at Springer for their support and patience.

xiv Preface to Second Edition

What Next?

At the risk of being unconventional, we mention here some of the more advanced
aspects of Formal Methods, which follow on naturally from concepts introduced
here and which the reader might pursue next.

The way in which we specify types can also be used to derive and present new,
composite types and, object-oriented, classes. Extra mechanisms need to be
introduced so as to facilitate inheritance between hierarchically related classes; but
the basic framework for reuse is already in place, and the O-O notion of pattern is
merely a generalisation of the tactics introduced here.

Within this text, we meet genuine, non-interfering, parallelism. Other kinds of
parallelism are possible and relate naturally to distributed systems that work in a
non-deterministic fashion (and can be characterised by non-deterministic eureka
rules). Such systems may need to be specified using temporal logic (in which
properties change with time). They therefore provide instances of situations where
we need to distinguish between (and link) requirements and specifications. And they
may well be implemented by multi-processor systems.

As you will see, program transformation plays an important role in our
constructions since it allows us to move from recursive functions to iterative
statements. But that is all we use it for. When we know more about the target
implementation systems (hardware and software) we can study the complexity of the
designs we produce and further transform these, correct, programs and systems so as
to improve their efficiency.

So there is certainly plenty of scope for development and application of the basic
material to be put to use, once it has been fully mastered. Now to work.

John Cooke
Loughborough University
May 2004

Preface to Second Edition xv

Contents

Abridged Preface to First Edition .. v
Preface to Second Edition .. xi

0 Introduction .. 1
0.1 What Is this Book About? ... 1
0.2 Some Terminology .. 2
0.3 How Might Programs Fail? ... 3
0.4 A Way Forward .. 10
0.5 On Mathematics ... 12
0.6 Linking Paradigms .. 13
0.7 Problem Solving .. 15
0.8 The Book Plan ... 22

Part A: Preliminaries .. 29

1 The Technical Background ... 31
1.0 Introduction ... 31
1.1 Functions, Relations and Specifications 35

1.1.1 Summary of Features .. 49
1.1.2 Guidelines for Specifications 50

1.2 Equational Reasoning and Types 51
1.3 The Origin and Application of Rules 55
1.4 Data Types .. 61

1.4.1 A Glimpse at the Integers 61
1.4.2 Logical Types ... 66

1.4.2.1 The Boolean Type, 66
1.4.2.2 Implication and Deduction 72
1.4.2.3 Boolean Quantifiers 76
1.4.2.4 Extended (3-valued) Logic 78

1.4.3 Sets ... 91
1.4.4 Integers .. 96

1.4.4.1 Inequalities .. 99
1.4.5 Bags .. 101
1.4.6 Lists .. 103

1.4.7 Records and n-tuples ... 107
1.4.8 Union Types ... 109
1.4.9 Sub-types and Sub-ranges 110
1.4.10 Type Transfer Functions and Casts 111
1.4.11 Data Types and Transformations 114
1.4.12 On Quantification ... 116

1.5 Applying Unfold/Fold Transformations 118

2 On Programming ... 125
2.0 Overview .. 126
2.1 Procedural Programming ... 127
2.2 ‘Good’ Programming .. 130
2.3 Structuring and (control) Flowcharts 131
2.4 PDL Overview .. 134

2.4.1 “Let” and “Where” ... 138
2.4.2 Scope and Parameters .. 139

2.5 Comments and Assertions .. 139
2.6 Verification of Procedural Programs 146

2.6.1 Sequencing .. 147
2.6.2 Alternation .. 149
2.6.3 Iteration .. 150

2.7 Program Derivation .. 154

Part B: Fundamentals ... 159

3 Algorithm Extraction ... 161
3.0 Overview .. 162
3.1 On Converging Recursion ... 164
3.2 Design Tactics .. 169

3.2.1 Checking Perceived Answers 172
3.2.2 Problem Reduction ... 175
3.2.3 Problem Decomposition 182

3.2.3.1 Structural Splitting 185
3.2.3.2 Predicated Splitting 201
3.2.3.3 Mixed Strategies 201
3.2.3.4 Domain Partitioning 202

3.2.4 The Use of Analogy ... 203
3.3 ‘Eureka’ Processes .. 206
Summary .. 221

4 Recursion Removal ... 223
4.1 Tail Recursion .. 225
4.2 Associative Recursion .. 238

xviii Contents

4.3 Up and Down Iteration .. 249
4.4 Speeding up Iteratons ... 257
4.5 Recursive Procedures .. 262
Summary ... 265

5 Quantifications .. 267
5.0 Overview .. 268
5.1 Defining Composite Values .. 268
5.2 Derived Composite Values .. 270

5.2.1 1-place Functions .. 270
5.2.2 2-place Functions .. 272

5.3 Application to Program Development 277
5.3.1 1-place Functions .. 278
5.3.2 2-place Functions .. 280
5.3.3 An Extended Example: The Factorial Function 282

5.4 Some Rules for Quantifications 291
5.4.1 General Rules ... 292
5.4.2 Special Rules for Logical Quantifiers 298

Summary ... 300

6 Refinement and Re-use ... 301
6.1 Operational Refinement .. 302

6.1.1 On Correctness ... 302
6.1.2 Some Properties of Design Refinement 307
6.1.3 An Alternative View ... 309

6.2 Re-using Designs .. 310
Conclusion .. 313

Part C: Developments ... 315

7 Sorting ... 317
7.1 Specification and Initial Discussion 317
7.2 Initial Designs .. 323

7.2.1 Problem Reduction .. 323
7.2.2 Structural Splitting .. 326
7.2.3 Predicated Splitting (Partitioning) 333

7.3 Complete Designs ... 341
7.3.1 Exchange Sorts .. 341
7.3.2 Merge Sorts .. 347

7.3.2.1 The Basic Merge Sort 347
7.3.3 Partition Sorts .. 348

7.3.3.1 Simple Partition Sort 350
7.4 A Quick Design ... 352

Contents xix

8 Data Refinement .. 357
8.1 On ‘Internal’ Data Types ... 358
8.2 Changing Data Types .. 358
8.3 Where to next? ... 370

9 Sorting Revisited ... 375
9.1 Exchange Sorts ... 375
9.2 Merge Sorts ... 383

9.2.1 Variants of the Merge Sort 384
9.3 Partition Sorts ... 390

10 Failures and Fixes ... 409
10.1 Inadequate Pre-Conditions .. 410
10.2 Failures in Structural Splitting 411

10.2.1 Loss of Vital Information 412

11 Further Examples .. 417
11.1 The 2-D Convex Hull ... 418
11.2 Topological Sort ... 424

11.2.1 Experimentation .. 425
11.2.2 A Proper Formulation 433

11.3 Some ‘Extremal’ Problems .. 439

12 On Interactive Software .. 455
12.1 Specifications Involving Change 457

12.1.1 Specifications of Input/Output 457
12.1.2 Conventional Communications 463
12.1.3 The Enabling of Computations 466

12.2 Pertaining to (Software) Systems 466
12.2.1 System Requirements 467
12.2.2 Specifying Systems .. 469

Appendix Transformation Digest .. 473
A.0 Re-write Rule Conventions ... 473
A.1 Data Manipulation Rules .. 473

A.1.1 The Type ... 475
A.1.2 Extended Logic and Conditional Expressions 477
A.1.3 Integers ... 479
A.1.4 Sets ... 480
A.1.5 Bags ... 482
A.1.6 Lists .. 483
A.1.7 Common Conversion Functions 485
A.1.8 Quantifier Rules .. 486

xx Contents

A.2 Quantifier Properties .. 490
A.3 ‘Not Occurs in’ .. 491
A.4 On PDL Structure ... 492

A.4.1 Scope and Parameters .. 494
A.5 PDL Transformation Rules .. 495

Bibliography ... 501

Index ... 503

Contents xxi

Chapter 0
Introduction

0.1 What Is this Book About?

This book is an introduction to the science of writing programs, the engineering of
software. It is not a book concerned with writing programs in a particular
programming language; nor is it a collection of standard algorithms for solving
common problems. It is about the creation of software designs which are
guaranteed1 to meet their requirements – that are correct. And correctness cannot be
qualified – software is either correct or it isn’t.

Software artefacts, programs, are strange things. ‘Good’ programs often look
absolutely trivial, but, like many products of human endeavour, this does not mean
that they were easy to create. At a time when virtually all students (of almost all
disciplines) are taught “to write computer programs”, another book that considers
how they should be written may seem unnecessary. Of course, there is a whole
world of difference between knowing what a programming language looks like (or
being able to understand how a given program might work) and being able to write
a program to fulfil a particular need. This difference, this gulf, is analogous to the
separation between ‘knowing English’ and being able to write a good story, in
English.

Here we are talking about serious programming, not hacking, not writing one-off
programs to be run on one specific piece of data; but about producing software
which is reliable, which will not break, and which always does what you expect it
to2.
1 Throughout, we shall use non-bold italics for emphasis.
2 When talking about our expectations about what a program should do, we need to address the
concept of robustness. Traditionally, a program is said to be robust if it can cope with ‘unexpected’
input. As you will see later, part of the specification of a program is devoted to describing which
inputs are legal. Handling ‘illegal’ input, and the extent to which a ‘customer’ requires you to do this,
should be incorporated in the specification so as to include appropriate error messages. But note that
unless the program is reading individual characters (or, possibly, key strokes), the trapping of certain
illegal input is simply not possible when using a high-level language. This has nothing to do with
failure of the software, but rather the failure of someone to use it properly. Likewise, a program that
is brought to a halt by an operating system (because of some condition such as overflow) is not
necessarily erroneous. It might not be halted at that point when run on a different system, so it has
magically corrected itself! We are fundamentally concerned with ensuring that the development of
our software does not cause errors and that in any context where the other components run correctly,
and have adequate capacity, the overall system will deliver results consistent with the specification.

Serious programming requires serious effort and can only be achieved at a cost.
That cost has to be considered in the light of the expense incurred when software
goes wrong. Of course, the nature of such expense depends on the context in which
the software is used. Obvious examples include financial implications when a
product fails to meet user expectations, the loss of potential new business
following the failure of a product, and the more immediate consequences of a
program simply giving the wrong answers, giving the wrong advice, issuing wrong
instructions to a piece of machinery and so on.

0.2 Some Terminology

To indicate how we intend to set about constructing software in a systematic and
disciplined manner, it is convenient to limit our comments to particularly simple
software artefacts. To this end, we introduce some terminology.

• A program 3 is a piece of software that takes in data, carries out a
calculation (executes an algorithm), delivers results, and stops. In principle, all the
data is available before execution starts.

• A process is a piece of software that may never stop; however, it
might often wait passively to be activated by the receipt of certain stimuli.

• A software system is a collection of inter-linked programs and
/ or processes controlled externally or by other processes.

All software products include programs (procedures, routines, etc.), and hence they
are our prime object of study.

We are concerned only with the integrity of software that we are constructing. We
are allowed to assume that other aspects of the system work in accordance with their
specifications and in particular that the programming languages used are properly
implemented. The ultimate aim is to be able to claim that “if everything else
works as it should, then our software will perform as it should”. This is closely
allied to the traditional engineering concept of being able to ‘sign off’ a particular
job — effectively taking responsibility for your contribution to a project. It is
essentially the basis of a contract that stipulates what your software claims to do
and the conditions (assumptions about the context and other provisos) under which
it is required to operate. In fulfilling our contract, we may also generate new (sub-)
contracts for part of the work to be done by others.

3 When terms are printed in bold italics the adjacent text acts as a definition.

2 Constructing Correct Software

0.3 How Might Programs Fail?

To emphasise and illustrate the kind of software error with which we are primarily
concerned, consider the following scenario.

‘A program 4 is required which will input a sequence of up to ten real 5 numbers
(preceded by an integer value that indicates how many reals are to be processed) and
from the sequence generate the ‘average’ and the ‘deviation’ (i.e. a measure of the
extent to which individual values deviate from the average 6).’ Suppose, for the sake
of argument, that this problem is given in exactly this level of detail, perhaps over
the telephone. This may seem unrealistic but is indicative of the kind of imprecise
information that programmers often have to work from.

Our local neighbourhood programmer, who is a physicist by training, recalls that
he once met the word “deviation” in a course on probability and statistics and, after
digging around in a text book he came up with a formula for “standard deviation”,

standard deviation =
2

(x − μ)∑2

n

where μ is the mean,
and n is the number of integers in the sample.

[The ∑ indicates summation of the following bracketed expression over all values
of x.]

This seems to be reasonable — and in any case the programmer doesn’t want to
display his ignorance by asking questions about the problem, which he presumes is
fairly easy and for which the program ought to be straightforward.

4 As already stated, this is not a book about programming in a specific language. Instead of using a
real programming language, and running the risk of alienating anyone who has a different ‘pet’
language, we shall use a generic representation which is similar to many block-structured languages
but not intended to be exactly the same as any particular one. We presume that you have knowledge
of some such high level programming language so that you will appreciate the situations that we meet.
Subsequently we shall develop this into a language for depicting our program designs.
5 Subsequently we shall not use “real” numbers except for (easy to understand, but perhaps
computationally complex) examples such as the current one. To deal with virtually any computation
involving real numbers requires knowledge of approximate representations and perhaps a significant
excursion into the subject of numerical analysis. In fact most calculations which involve real numbers
cannot in the strict sense be computed; most of the numbers involved cannot even be represented
within a computer.
Once we get going we shall have no interest in anything to do with this kind of calculation. As you will
see, we are mainly concerned with calculating programs, i.e. performing calculations, the result of
which is a program.
6 Examples such as the one included here come from the folklore of programming. No originality is
claimed, but no source can be cited.

Introduction 3

We now give some programs intended to perform the requested computation.

Program 1

program calculation,
begin

var i,n, integer
mean, sum: real
data;array(1,10) of real

 readln(n)
for i = 1 to n

 readln(data(i))
 sum = 0,

for i = 1 to n
 sum = sum + data(i)
 mean = sum / n
 writeln(mean),
 sum_of_sq = 0

for i = 1 to n
begin

 sum_of_sq = sum_of_sq + sqr(data{i} – mean),
end

 standard_dev = (sqroot(sum_of_sq)) / n,
 writeln(standard_dev : 1 : 2)
end

This ‘program’ contains many syntax errors. But what is the syntax of this new
language (Program Design Language, PDL)? What are the rules? PDL is discussed
in Chapter 2, but here we shall merely make the following points:

(a) Semi-colons will be used as sequencing separators. Elsewhere, when no strict
order of execution or evaluation is required, we use commas.

(b) “=” has been used where the PDL assignment symbol “æ” should appear.

(c) “{}” brackets have been used to hold the index for the data array. “[]” should
have been used.

(d) Other syntax has been omitted or is incorrect, for example,
 “do” missing from “for...to...do...od” construct.

Here the do...od are used as brackets which delimit the sequence
of commands to be repeated.

The built-in function for square root is “sqrt”, not “sqroot”, and there is no
‘sqr’ built in function, x^2 is used to denote x squared.

4 Constructing Correct Software

Some variables have not been declared.
Within a begin...end block, (all) declarations precede (all) commands.
The input/output commands are simply read, write, and write_new_line.

In a way, these are ‘good’ errors because the programming system will find them.
We hope that there is no danger of their surviving and producing incorrect answers.
Some programmers don’t bother checking such details and assume that the
programming system will find the error. This is dangerous, as we shall see.

Program 2

program calculation;
begin

var n, i: integer;
 mean, sum_of_sq, standard_dev, sum: real;
 data: array[1..10] of real;

read(n);
for i æ 1 to n do read(data[1]) od;

 sum æ 0;
for i æ 1 to n do sum æ sum + data[i] od;

 mean æ sum / n;
 write(mean);
 sum_of_sq æ 0;

for i æ 1 to n
do sum_of_sq æ sum_of_sq + (data[i] - mean)^2 od;

 standard_dev æ (sqrt(sum_of_sq)) / n;
write_new_line;

 write(standard_dev)
end

The program is syntactically correct but may be required to perform undefined
actions at run time.

The erroneous use of the subscript “1” instead of “i” cannot be detected by the
compiler or run-time system because it is perfectly valid; but it is perhaps not what
was intended.

data[2], data[3] data[10] are uninitialised. Attempts to use these values should
result in an error. There would even be a problem with data[1] if n were given a
negative value.

Introduction 5

Program 3

program calculation;
begin

var n, i: integer;
 mean, sum_of_sq, standard_dev, sum: real;
 data: array[1..10] of real;

read(n);
for i æ 1 to n do read(data[i]) od;

 sum æ 0;
for i æ 1 to n do sum æ sum + data[1] od;

 mean æ sum / n;
 write(mean);
 sum_of_sq æ 0;

for i æ 1 to n
do sum_of_sq æ sum_of_sq + sqr(data[i] - mean)^2 od;

 standard_dev æ (sqrt(sum_of_sq)) / n;
write_new_line;

 write(standard_dev)
end.

This program will give the anticipated answer under certain conditions. (Notice that
in removing one ‘error’ we have introduced another.)

This program may be regarded as ‘correct’ when n = 1. It will also perform
similarly when n > 1 if data[i] = data[1] for enough i's or the values in the array just
happen to give the same answer. The error may not be detected if ‘unlucky’ test
data is used — but if we always knew what data was going to ‘break’ the program
there would be no need to test using such data. What we need is to detect the errors
that we don’t know about.

Selecting test data by referring to the program under test, or relying purely on
chance, is another dangerous practice. If you choose to follow the ‘build and test’
approach, test data should be selected with reference (only) to the problem, not the
proposed solution — the program.

6 Constructing Correct Software

Program 4

program calculation;
begin

var n, i: integer;
 mean, sum_of_sq, standard_dev, sum: real;
 data: array[1..10] of real;

read(n);
for i æ 1 to n do read(data[i]) od;

 sum æ 0;
for i æ 1 to n do sum æ sum + data[i] od;

 mean æ sum / n;
 write(mean);
 sum_of_sq æ 0;

for i æ 1 to n
 do sum_of_sq æ sum_of_sq + (data[i] - mean)^2 od;

 standard_dev æ (sqrt(sum_of_sq)) / n;
write_new_line;

 write(standard_dev)
end

Arguably the program is getting better. This version is syntactically correct and
will run legally when presented with valid data, but there are still latent errors that
still have not been removed. With invalid data, there will be non-standard
operations during execution — the program is not robust7.

Problems will arise if n = 0 (division by zero), or if n > 10 (the array cannot deal
with more than ten real numbers).

Providing that the run time system is very particular, these errors will be detected,
but shortcuts are often taken and checks omitted. It is possible for a program to run
and give results that look reasonable but are actually wrong (wrong as opposed to
inaccurate — remember this program uses ‘real’ numbers).

What if we take a different approach? Suppose that we find a program written by
someone else that seems to do the required job.

7 Even with the limited, but common, interpretation in which the type of data is correct but the value
is ‘unexpected’.

Introduction 7

Program 5

program calculation;
begin

var n, i: integer;
 mean, sum_of_sq, standard_dev, mean_sq,

estimate_std_dev, sum: real;
 data: array[1..10] of real;

read(n);
if (n <= 0) or (n > 10)
then

 write(”ERROR!”)
else

for i æ 1 to n do read(data[i]) od;
 sum æ 0;

for i æ 1 to n do sum æ sum + data[i] od;
 mean æ sum / n;
 write(mean);

mean_sq æ mean * mean;
 sum_of_sq æ 0;

for i æ 1 to n
 do sum_of_sq æ sum_of_sq + (data[i] - mean)^2 od;

 standard_dev æ (sqrt(sum_of_sq)) / n;
 estimate_std_dev æ (sqrt(sum_of_sq)) / (n - 1);

write_new_line;
 write(standard_dev)

fi8

end

This program is syntactically correct, runs legally with valid data, and rejects
invalid (but correctly typed) data, but it also contains calculations that are not
required.

We do not need the calculation of the square of the mean (“mean_sq”) or
“estimate_std_dev”. There may well be an error within these calculations; indeed
this program will crash if n = 1. Admittedly, a clever optimising compiler might
remove the unnecessary code, but probably not before time has been spent in trying
to modify it.

Let’s see what we get if we strip out all the irrelevant code.

8 Notice that here we have used ‘fi’ as a completer for the ‘if’ construction. In this case ‘else...fi’
act as delimiters for the sequence of commands to be executed if the controlling condition is False.

8 Constructing Correct Software

Program 6

program calculation;
begin

var n, i: integer;
 mean, sum_of_sq, standard_dev, sum: real;
 data: array[1..10] of real;

read(n);
if (n <= 0) or (n > 10)
then

 write(“ERROR!”)
else

for i æ 1 to n do read(data[i]) od;
 sum æ 0;

for i æ 1 to n do sum æ sum + data[i] od;
 mean æ sum / n;
 write(mean);
 sum_of_sq æ 0;

for i æ 1 to n
 do sum_of_sq æ sum_of_sq + (data[i] - mean)^2 od;

 standard_dev æ (sqrt(sum_of_sq)) / n;
write_new_line;

 write(standard_dev)
fi

end

Even a program that is syntactically correct, robust, and never fails can still be
wrong because the customer wanted something else.

Introduction 9

What was actually wanted in this case was the value midway between the minimum
and maximum values and half the difference between these extreme values. So, for
instance, we might have results x and y which indicate that the input values were in
the range x ± y, i.e. from x – y to x + y. There was in fact no need for elaborate
calculations and no need to store all the data values. To illustrate that a program is
correct we must relate it to the specification of its task. What was actually required
here was to find the max and min values and print (max + min)/2
and (max – min)/2. (Of course, the programmer didn’t know this — and that is
exactly the point being made.)

As yet you do not know how to write formal specifications. When you do, you
will be able to specify what this program should have done. This needs to be
identified before considering how the task may be carried out!

Subsequently, you may also be able to prove that a suitable program does indeed
satisfy its specification. At least you will be able to formulate the conditions that
are necessary for this to be so. Alternatively, and of more practical benefit, you
will know how a program can be constructed from a specification in such a way
that it will be correct, automatically.

Programs may fail because of:

syntax errors (context-free syntax);
(compile-time) semantic errors (context-sensitive syntax errors);
(run-time) semantic errors (including lack of robustness);
or because it is simply WRONG

The message here is that although the use of certain, modern, languages and
sophisticated support systems can prevent the first three of these kinds of error, the
correctness of a program cannot be judged simply by looking at the program text.
So, what can we do?

0.4 A Way Forward

To explain our intentions, we consider the words in the book title, albeit in a
different order.

Software — Instructions (written in a formal programming language) which
control the internal actions of a computer with the intention of achieving some
desired result or state, or maintaining some relationship between values within the
computer’s memory.

10 Constructing Correct Software

Correctness — The property that the software satisfies its specification or meets
its requirements. To demonstrate correctness, we need the specification (or the
requirements — there is a technical difference which will be discussed later) to be
expressed unambiguously. Of course, such a specification has always formed the
basis of ‘testing’. The object of testing being to show that “for all suitable data,
the outcome that it produces is consistent with the specification”.

Construction — Hitherto it has been the tradition that software was written and
then, retrospectively, ‘tested’. With the advent of program verification, a theory
was developed whereby, in principle, a procedure could be set up so that the
“correctness theorem” might be formulated and, hopefully, proven; the aim being
the same as testing, namely to show that “for all suitable data, the outcome that it
produces is consistent with the specification”. Such mathematical proofs can be
inordinately complex, even when theorem-proving tools are available; and if the
theorem is shown to be false (i.e. the software is wrong) there may be no useful
clues as to where it fails and how to fix it. In contrast, taking the constructive
approach, we work directly on the specification and manipulate it in an attempt to
make it executable (ultimately in a procedural fashion). This process might not
succeed (some requirements may be unattainable for various reasons) but at each
stage the current software ‘design’ is always consistent with the specification.

Basics — Obviously, there is a limit to what can be covered in an introductory
text on software construction. We shall concentrate on exposing the problem,
setting up a framework for the synthesis of correct software designs from adequate
descriptions, and introducing appropriate mathematical machinery to (a) support the
description of requirements and (b) allow us to reason about relationships between
requirements and designs.

We seek ways of developing software

so that it is consistent with its specification,

so that it is correct by construction.

The approach adopted here might best be described as

calculating a program from its specification.

How do we go about this?

Although we are not primarily interested in solving ‘mathematical’ problems, the
mere fact that we are going to perform some rather special calculations means that
we do need to use (a different kind of) mathematics. This needs a few words of
explanation.

Introduction 11

0.5 On Mathematics

Regardless of the kind of data being processed, and how it is processed, all
computing activity can be characterised mathematically. This is crucial to our
purposes since we wish to be able to reason about the problem and, hopefully, how
we might solve it. Any suitably precise notation having a ‘well-defined’ meaning
and amenable to value-preserving manipulations is mathematics. To benefit from
the problem being expressed in a mathematical fashion, we need to understand how
that mathematics works.

As we proceed, mathematics will be used:
• as a language in which to express specifications and requirements

— we need to know how to read (and speak) it
— we need to know exactly what it says (what it means)

• as rules which govern how we are allowed to manipulate information
— we need to know what to aim for

(i.e., to identify the goal of our manipulation).

The need to read mathematics ranges from coping with peculiar (but easy to
process) syntax such as ‘atom(x)’ — spoken as ‘x is_an_atom’ 9 — to the more
esoteric symbols such as fi, ∞, ∀, and Ò. These relate to well-defined operations
and provide a precise and concise shorthand which can subsequently be manipulated.
A set of manipulation rules are collected together in the appendix, but all the
concepts will also be discussed informally when they are first encountered, and we
shall indicate how the notation should be spoken.

It is often the case that, when writing a procedural program, a programmer will start
coding directly into the appropriate target language. We adopt a different stance,
seeking first to derive a functional representation from which a procedural program
can often be obtained in a fairly routine fashion. Proceeding in this way delays the
need to consider state changes, assignment statements, and iterations; indeed many
of these, usually tedious and ‘hard to verify’ procedural language features can
subsequently be handled in a very simple way using transformational methods. It
also provides forms of program that can be used as intermediate goals in our
mathematical manipulations.

So how should we set about constructing programs that calculate functions? That
is the problem addressed by this book. The complete answer will not emerge for
some time but, so as to give you a glimpse of how we shall proceed, we give a
handful of simple examples. These will first be discussed informally and will be
revisited later when the necessary formalities have been introduced and we can do it
properly.
9 You can even write it in exactly this form! - without the quotes.

12 Constructing Correct Software

Throughout the book, it is not our intention to consider specialist problem
domains. To do this would take us away from general methods and would require
the reader to have specialist knowledge. We are primarily interested in explaining
general techniques and illustrating them (in detail) by applying them to a handful of
familiar problems. Obviously, we need a vehicle for our initial illustrations; where
necessary, we shall use natural numbers (1,2,3,4, ...) and presume some familiarity
with simple arithmetic. Having said that, it must be stressed that the techniques
that we shall study are not mathematical in the commonly used sense of the word
— they are not limited to or biased towards the calculation of mathematical10

functions.

Within the overall approach there are two major strands. The first is the linked use
of the logic(al), functional11, and procedural paradigms.

0.6 Linking Paradigms

We illustrate with a very simple example.

Example 0.1 Suppose we have a logical description which links the input value
x to the output value y by the expression:

x = y – 2

Now rearrange to give y as the subject

¢ y = x + 2

Or, without the y, so the answer is simply the result of evaluating an expression,

‡ [y =] x + 2

And finally, make the delivery of the result to y explicit

‡ y æ x + 2

In a more complex situation, we might introduce a function name in the last two
phases to give,

[y =] F(x) where F(x) – x + 2

1 0 There is a paradox here. All the manipulations carried out in computers under the control of
software can be viewed as mathematical but do not necessarily use everyday mathematics, such as
calculus or common arithmetic.
1 1 Our main development path only skirts the possibilities afforded by full-blown functional
programming. To follow alternative paths may prove fruitful but would distract from our current
purpose. Apologies to devotees of functional programming.

Introduction 13

‡
F(x) – x + 2;
y æ F(x)

❑

Here the symbols ¢ and ‡, which will be properly explained later, indicate that an
expression has been manipulated in a reversible way or that there has been a change
in the type of program (written in a different programming paradigm). We trace the
derivation (i.e., the calculation) of the final procedural program by a sequence of
expressions.

The expression
x = y – 2 is a logical expression, implicitly defining y in

terms of x,
the expression

x + 2 is a numerical expression, and
the expression

F(x) – x + 2;
y æ F(x)

represents the definition of the function F ,
followed by the evaluation of F(x) and the assigning of its result to y.

Each of these expressions obeys appropriate structuring rules and has an
unambiguous meaning. Manipulation of these well-structured, strongly-typed,
expressions provides a basis for our formal derivation and development of programs.

Of course, most calculations are far more complicated than the illustration above.
By virtue of the intermediate functional form, we usually encounter recursion.
Indeed, the logical-functional-procedural (LFP) progression might also be described
as recursion introduction and (often) subsequent removal. This is pivotal to the
method that we will put forward, so much so that a large section of Chapter 3 is
devoted to the topic.

The LFP scheme of development is fairly mechanical, but not totally: it does need
human intervention to steer the process 12, and it gives some intermediate goals to
aim at when constructing the program. But how do we start to manipulate a
(logical) specification into a corresponding function? The second strand of the
‘method’ is the use of general problem-solving tactics within this phase of the
construction. To do this properly requires that we introduce some necessary
background material but, as above, we shall first try to give the flavour of the ideas
involved.

1 2 We can therefore have many different programs that perform the same computation.

14 Constructing Correct Software

0.7 Problem Solving

As with all problems, we need to have some ‘domain knowledge’ (i.e., we need to
know something about the kind of data items involved and their properties).
Regardless of how it may be solved using a computer; we need (at least in
principle) to be able to solve the problem ‘by hand’. As already noted, our
introductory illustrations will use natural numbers and simple arithmetic in an
attempt to get started without having to explain the problems in great detail.
Having said that, we shall use this occasion to gently introduce some of the
notation which will be routinely used in subsequent chapters. The notation will
also be properly described and explained at length when we meet the technical issues
for real. Notice that the program schemes derived in these examples are recursive.
This is an important characteristic of the intermediate forms of program design that
we will evolve and plays a major role in avoiding error introduction.

Example 0.2 The Greatest Common Divisor13

Given natural numbers m and n, we have to find the largest integer (actually another
natural number) which exactly divides both of them.

First of all, we define (declare!) as the name for the set, or type14, of natural
numbers. (pronounced, ‘n’, or ‘the naturals’ or ‘the natural numbers’ depending
on how brief you wish to be — but you must be unambiguous). Here we have
another ‘n’ but, even when spoken rather than written, the context should make it
clear which you mean, the type or (the name of) a number.

 is the set { 1, 2, 3, 4, (to ‘infinity’) ... }.

The values, n and m, represent values of type . We indicate this by writing

m: , n:
or

m,n: that is “m and n are of type ” — this is the same idea
as declarations in many modern programming languages.

Now for the function:

gcd(m,n:) – the largest i: such that i|m and i|n.

 “The function gcd(–) is defined to be ... (i|m) i divides m and”

We will not go into all the details but pick out some of the relevant factors used in
the proper mathematical calculation (of the program scheme, not the answer to the
gcd problem).

1 3 Also called the Highest Common Factor (HCF).
1 4 Types are also called ‘sorts’ or ‘kinds’, but we shall not use these terms for types.

Introduction 15

Notice, if i|m then m = i*j, for some integer j (i.e., m is a multiple of i) with
i,j: . Similarly, if i|n then n = i*k (for some k:).

Moreover 1 ≤ i ≤ m , 1 ≤ j ≤ m
and

1 ≤ i ≤ n, 1 ≤ k ≤ n.

Obviously, if we were only asked to find any divisor of m and n, the number 1
would do;

1|m since m = 1*m etc.

Finding the largest divisor (of both m and n) is a little more tricky; let’s defer that
problem for a while and look at some special cases.

What if m = n? Then n|m and n|n (because n = 1*n) so n is a common divisor; it is
also the largest since all divisors of n are ‘≤n’.
So

gcd(n,n) = n

Similarly, since m and n are interchangeable in the definition of gcd(m,n), it must
be the case that

gcd(m,n) = gcd(n,m).

Let us now assume that m ≤ n. If this is not so, then we can simply swap the
values of m and n.

Notice also that if m < n and i|m and i|n, then

n – m = i*k – i*j
= i*(k – j) and (k – j): .

so i is a divisor of (n – m).

Hence, any divisor of m and n, and hence also the greatest divisor (whatever it is,
we certainly don’t know yet) is also a divisor of (n – m). So, gcd(m, n) divides n
(and m) and therefore is ≤ gcd(m, n – m). By a similar argument gcd(m, n – m)
divides m and n and is therefore ≤ gcd(m,n). Hence they are equal and we may
write:

When m ≠ n,

gcd(m,n) = if m>n then gcd(n,m)
else gcd(m,n–m) fi

and n–m is smaller15 than n.

1 5 This is certainly true, but in general we need to be a little more careful; see Chapter 3.

16 Constructing Correct Software

So, by way of illustration:

gcd(15, 9) = gcd(9, 15)
= gcd(9, 6)
= gcd(6, 9)
= gcd(6, 3)
= gcd(3, 6)
= gcd(3, 3)
= 3

A full (functional) scheme for the calculation of gcd is thus:

gcd(m, n) – if m=n then n
else if m > n then gcd(n, m)

else gcd(m, n–m)
fi

fi16

Notice that the right-hand side of this expression is simply a recursive expression.
❑

What should we notice from this example that might be of more general use?

(1) We use cases (such as m > n and m ≤ n) to break the problem into similar, but
simpler or smaller, problems which together solve the original.

(2) We make use of simple instances of the problem (such as when m=n).
(3) We have used a way of reducing the problem to another instance of the same

problem acting on ‘smaller’ data value (by replacing gcd(m, n) by gcd(m, m–n)
when appropriate).

Of course, the detailed reasoning used here depends on the properties of integer
operations and tests. We shall seek similar properties of other data types so that
design principles can be used in many different situations.

Example 0.3 Integer Division Function
We are asked to derive a program to compute:

div(p,q:) – n: | n ≤ p/q < n + 1

“the division of p and q, both natural numbers, is defined to be n, an integer (),
such that (written as ‘|’) n ≤ (the fraction) p divided by q which is less than n + 1.”

1 6 Remember that we use ‘fi’ to close the ‘if then else’ construct. Thus ‘ else...fi’ act as brackets and
avoid ambiguity in similar but more complex situations.

Introduction 17

Notice that since the answer for div(2, 5) is zero, the type of the result cannot be
. is the set, the type, of all integers.

– { ... , –3, –2, –1, 0, 1, 2, 3, }

Notice also that p/q represents the exact fractional answer, but the answer to the
div(p, q) function evaluation is n, an integer.

In fact n = p ÷ q
so

3 ÷ 2 = 1 remainder 1
2 ÷ 3 = 0 remainder 2
7 ÷ 3 = 2 remainder 1 etc.

In integers
 1 ≤ 3 ÷ 2 < 2

So, multiplying through by 2,
 1*2 = 2 ≤ 3 < 4 = 2*2

and in general
n*q ≤ p < (n+1) * q

Similarly,
0*3 ≤ 2 < (0+1) * 3

and
2*3 ≤ 7 < (2+1) * 3.

How can we derive a program design to compute div?

Are there any simple cases that give rise to simpler sub-problems? And which
might be useful in finding an answer to the overall problem?

Although there is no guarantee of success, reasonable things to try might be
looking at the problem when p=q, p<q and when p>q.

When p=q we should surely get p ÷q = 1. We can check that this does in fact hold
by substituting 1 for n (and q for p) in the definition.

i.e. 1*q ≤ q < (1 + 1)*q
or q ≤ q < 2*q which holds since 0 < 1≤ q and 0 + q < q + q.

So 1 is a valid result. In fact it is the only valid result when p=q but that does not
really matter (see the next example).

18 Constructing Correct Software

Now what if p < q? What if we are dividing by a number larger than p? Clearly,
the fractional answer from dividing p by q will be less than 1 and, since p and q are
both positive, p/q will not be negative. So zero seems to be a reasonable value to
expect for div(p, q) when p<q. Again we need to check.

0*q ≤ p < (0+1) * q
simplifies to

0 ≤ p < q which holds since 0<p and, by assumption, p<q.

Now for the hard bit. Suppose p>q and let r = p – q. (Since q> 0, then r<p and, if
we keep subtracting more q’s, to get p – 2*q, p – 3*q, p – 4*q etc., we will
eventually reach a value which is ≤ q. Moreover, we get there in less than p
moves, since the smallest possible value of q is 1. Knowing how many moves is
not important here; we simply need to know that we will get there in a finite
number of steps.) But how does this help with the evaluation of div(p, q)?

Suppose, further, that div(r, q) = m.

Then m ≤ r/q < m + 1
so

m*q ≤ r < (m + 1)*q
and

m*q ≤ p – q < (m + 1)*q

Thus
m*q + q ≤ p < (m + 1)*q + q

and
(m + 1)*q ≤ p < (m + 1 + 1)*q.

But this says that m + 1 is an acceptable value for div(p, q). Put another way

div(p, q) = div(p – q, q) + 1 [div(p, q) = div(p – q, q) + div(q, q) !]

Thus we can extract an executable expression to use as the body of a function
implementation:

div(p, q) – if p<q then 0
else if p=q then 1

else 1 + div(p – q, q)
fi

fi

Introduction 19

Let’s just illustrate this by means of two specimen evaluations,

div(14, 3) = 1 + div(11, 3)
= 2 + div(8, 3)
= 3 + div(5, 3)
= 4 + div(2, 3)
= 4

and
div(4, 2) = 1 + div(2, 2)

= 1 + 1
= 2

❑

Despite some similarities with the previous example, this design is not based on
problem reduction but problem decomposition. If we regard the size of the initial
problem as p (with p > q), then we have replaced it with a combination of two
smaller problems, of sizes p – q and q. This worked for this problem because
div(q, q) gives an exact answer.

Example 0.4 Greater_than
The two preceding examples were deterministic (i.e., for each valid input — and all
inputs of the appropriate type were valid — there was exactly one answer). This,
by definition, is what should happen with (the implementation of) a function. But
the specification of a function (or more properly a class of functions) need not be so
restrictive. It might also be the case that some input values may not yield valid
results even though they are of the right type. This example illustrates both these
possibilities.

First, we need a description of what is required of this greater_than function17.

The input and output values for this function are drawn from the type 0..10, that is
the set of integers between 0 and 10 inclusive. If the function is given the value x
as input and delivers the result y, then all we require is that x<y should be true. Of
course, any particular implementation will give the same value y whenever it is
presented with a specific input x. On the face of it we can therefore write

greater_than(x:0..10) – y:0..10 | x<y

A few minutes thought will reveal potential problems with this “definition”.
Given the x value 7, greater_than(x) could deliver 8 or 9 or 10 as valid answers.
Similarly, greater_than(5) should deliver one of the values 6 or 7 or 8 or 9 or 10,
but which? Well, from the given requirement we really don’t care - providing that
we always get the same answer every time we try the same evaluation. What is
1 7 This is not the function which takes two numbers and delivers the value True if the first is
‘greater than’ the second.

20 Constructing Correct Software

more worrisome is what we do with greater_than(10). There is no value in the set
0..10 which is greater than 10 so no answer is possible. The computation is
impossible and we would have best been advised never to have tried to carry it out.
So we need to include, as part of the specification, some proviso that tells us that
10 is not a good input value.

You might regard this as a strange example when compared with the others. True,
it doesn’t really have a nice formula18 associated with it but in many ways it is
more typical of (under-specified) computations which are carried out by programs.
Even though there is some scope for variation in the way that the above problems
can be programmed, all the program designs will be ‘similar’. Here there is much
room for diversity.

Although we shall soon be able to write the necessary information in a much more
systematic way, let us first include the relevant conditions in the description.

greater_than(x:0..10 | x<10) – y:0..10 | x<y

That is, given a value x of type 0..10, which is less than 10, deliver a value y, of
the same type, such that x<y.

Now we give a few of the possible, correct, implementation schemes:

greater_than(x) – x + 1

greater_than(x) – 10

greater_than(x) – if x < 5 then x + 2 else x + 1 fi

greater_than(x) – if x = 0 then 9
else if x = 2 then 3

else if x = 7 then 9
else 10

fi
fi

fi

Of course, there may be many different ways that a certain function can be
implemented. There is also another degree of variability which follows from
having intentional (logically) weak specification, such as that given above for
greater_than. In general, we specify sets of functions, each of which will adequately

fulfil a particular requirement.
1 8 A formula which tells how to compute y directly from a given x.

Introduction 21

0.8 The Book Plan

Procedural programs — such as programs written in Pascal, or C, or C++, or Java
— are the most common. They are also the most difficult to verify (i.e. to prove
that they actually satisfy their specifications — that they never give wrong
answers). Other, less well-known programming paradigms (ways of expressing the
computations to be undertaken) are much easier to verify, and that is why they are
so important in serious programming.

Adopting a fairly traditional approach to programming, even with these more
esoteric kinds of languages, still requires something to be proved if we are to
guarantee correctness (and proofs are hard). That is why program verification is
seldom carried out by practitioners. The overall approach underpinning the
development method presented here hides many of the proofs. It uses calculations
and ‘checks’ but is, nevertheless, proper.

Program development is concerned with the construction of a program that will run
using an available language/machine combination and which can be shown to carry
out the desired calculation . These calculations include all situations where the
answer can be derived or deduced from the input data by manipulation, so they
include sorting, file updating etc., and are certainly not restricted to numerical
computations. In fact, these numerical programs are of little general interest in
Computing Science.

Our prime concern is correctness (at the procedural level), and factors such as
efficiency and optimisation are only considered to a very limited extent — they are
important but are secondary to correctness; a ‘small’, ‘fast’ program which is wrong
is easy to write but utterly useless.

How the various components and processes fit together is shown in Figure 0.1.
Here the demarcation line between the customer and the software engineer comes at
the level of formal specifications. This means that ‘testing’ (which includes
exercising, rapid prototyping, etc.) should be targeted at getting the initial
description as nearly correct as possible before investing software engineering effort
to build a proper, a more acceptable, program from this description.

22 Constructing Correct Software

Informal Program
Requirements

Logical (formal) Statement
of Requirements

— including Specification
(all the details required
by the programmer)

Testing

Directed Version of
the Specification
(functional form)

reformulation
(transfinement)

Logic Program

language details

problem-solving
techniques

reformulation
(transfinement)

Functional Program

Parallel Program

Parallel Program
design

Procedural Program
design

Knowledge of
Data Types

Procedural Program

Figure 0.1

One activity that occurs twice in the scheme is ‘transfinement’. Although this
means the same as the more commonly used term ‘refinement’, we choose to use
this new term (derived from ‘refinement’ and ‘transformation’) to emphasise the
technical differences between transformations, which are reversible, and strict
refinement or reduction, which is not reversible and generally indicates a loss of
information or the rejection of certain alternatives. The word ‘reification’ is also

Introduction 23

sometimes, and more properly, used instead of refinement; it means “to make more
‘like stone’ ”, more firm, more deterministic and, in this context, more like a
program.

How do we translate this scheme into a programme of study, or the chapters of a
book? The master plan is set out in Figure 0.2.

3
Algorithm
Extraction

4
Recursion
Removal

6
Refinement

7
Sorting 1

11
Further Examples

Appendix
12
Interactive Software

1
Background
Material

5
Quantifications

2
 On
Programming

8
Data
Refinement

9
Sorting 2

10
Failures

Preliminaries

Fundamentals

Developments

Figure 0.2

Before we can begin with the main task of program generation, we must introduce
appropriate technical ‘machinery’. We do this in Chapter 1 and start by introducing
the way in which we present specifications. These give the essential properties of

24 Constructing Correct Software

the calculation that we are required to perform. A specification tells us what has to
be done, not how it can be achieved, and here no changes are specified. It begins
with explaining the various components necessary to specify a function 19. These
kinds of specifications are expressed as a relation between an input (a single value)
and an output (again a single value). However, these values may be of arbitrarily
complicated types — in exactly the same way that complex data types can be built
within high-level programming languages — and so the inputs and outputs are not
as restricted as they might first appear. We therefore move on to define the basic
data types and constructors for building more complex types from already existing
ones. This is done by giving sets of legal algebraic transformations20 that can be
applied to expressions involving data values of these types — expressions that can
then form part of our specifications. How new rules may be derived is covered, as is
the proper justification of how the rules are applied to transform expressions so as
to preserve their value.

Although detailed manipulations will eventually be necessary, we discuss most of
these types and constructors in outline only. More extensive rule sets are given in
the appendix for subsequent reference.

[It is essential that the reader be familiar with the possibility and practice of
rearranging information into a required form and doing it within the ‘rules of the
game’ i.e. algebraically. Remember that we eventually want to be able to calculate
a program from a specification, and to do this, as with any other calculation, we
need to be able to perform the calculations for ourselves before even entertaining the
possibility of computer-assisted mechanisation.]

Chapter 2, which can be skipped without interrupting the main flow of the
presentation, discusses traditional wisdoms about programming and established
formal approaches which link programs with formal specifications.

This material, some of which can be fruitfully integrated with the subject matter of
later chapters, is included here in order to illustrate and emphasize the alternative
stance adopted in Chapter 3. Chapter 2 is, in part, retrospective. Chapter 3 seeks
to be constructive. Having said this, there are some sections which might seem out
of place; there is no clear dividing line.

Chapter 3 contains the pivotal material of this book. It deals with the first part of
the LFP sequence of programming paradigms; it covers the introduction of
recursion and the formalisation of various problem-solving strategies that help us in

1 9 In fact, we specify non-empty sets of functions, any one of which will adequately deliver
acceptable results.
2 0 The transformation rules associated with the data types covered in Chapter 1 may also be thought of
as (algebraic) specifications of those types. So as not to confuse and overload this word, we shall try
to avoid using it in this way.

Introduction 25

constructing these recursive designs for solutions. The end products of this chapter
are procedural programs which embody function calls, usually recursive functions,
and no loops. [The notion of (loop) invariants, commonly found in other books on
formal methods and discussed briefly in Chapter 2, is hidden; it is still there of
course but is not needed.]

Adopting a purely constructive approach to producing an implementation of a
function often involves considerable amounts of very detailed calculation and
manipulation. Having seen how a function — a calculation — can be specified and
how we are allowed to manipulate the expressions within the specification, we are
now in a position to ‘twist’ and (legally) ‘trim’ the specification into an executable
form which can be used as a program design which, by construction, will be
consistent with the specification. We calculate a program design from the
specification of a function. To do this usually requires much detailed manipulation.
Although such detail cannot be avoided, it need not subsequently be repeated. There
are two major ways to handle this. One is by ‘checking’ the correctness of a result
that is thought to be ‘obvious’; this is introduced in Chapter 3. The other method,
component re-use, is considered in Chapter 6. Examples of this technique —
essentially simple instances of retrospective verification carried out by evaluation of
appropriate expressions — are to be found in various places throughout the
remainder of the text.

Although the construction process can be used in different ways, it is perhaps best
to regard it initially as evolving the structure of software in a top-down fashion.
One way to visualise this is to consider that, we start from a single ‘black box’
which contains a specification, and that we replace it either by a segment of
executable code or by a (structured) flowchart which includes lower-level
specification boxes. By virtue of the rules used, each replacement is ‘correct’ and
the development of each box can be done independently (independent of other boxes
but sensitive to its own context and thus using properties of the data values that
arise from preceding computations).

To derive (calculate, compute) a correct recursive program might not be enough in
some situations. It could be that the target language that we have to use for
implementation does not support recursion. In Chapter 4, we present a way of
transforming certain common forms of recursion into familiar looping commands.

[The reader who is unhappy with the thought of recursion introduction can read
Chapter 4 before Chapter 3 and (hopefully) become convinced that the recursions
that we introduce can, usually, be removed later. But using these intermediate
recursive forms and deferring iteration, allows us to avoid side-effects and the notion
of ‘values’ that change as the program is executed.]

26 Constructing Correct Software

Prompted by the possibility of extracting program designs from certain forms of
specification21, Chapter 5 returns briefly to the subject of specifications. This also
means that we can fill a few gaps in the formal descriptions encountered (and
admitted) earlier. We look at certain forms of specification which readily lend
themselves to more immediate extraction of program designs; thus we can take
bigger steps in the synthesis process (but here there is a price to pay, namely
having less possibility of exploiting features that occur in the current situation but
not in general). These forms not only include the logical quantifiers “for all” and
“there exists” and their generalisation to other data types but also the extension of
unary and binary functions to act on collections of data items. To benefit from
these ‘big’ rules often requires substantial reformulation of the initial specification
and may be regarded as seeking a more abstract representation.

When using transformation rules, all the manipulations are reversible. However, it
is not uncommon for us not to need all the information presented to us; hence
selections can be made, and here the manipulations are generally not reversible.
Technically, we move on to the topic of refinement (or reduction) which is
addressed in Chapter 6. Principally there are two kinds of refinement, operational
refinement and data refinement. Here we present operational refinement, which
deals with the removal of alternative ways of processing data without altering the
set of valid inputs. It might seem strange to start off with a non-deterministic
specification of a function, the implementation of which, by definition, has to be
deterministic. That is a fair observation, but we often introduce intermediate
calculations and, so as to delay design decisions as long as possible, the
specification of these can be non-deterministic. This chapter also discusses the
possibility of re-use and puts it in a formal context; essentially we ask whether a
design that satisfies one specification can be used to satisfy another.

In Chapter 7, we apply many of the transfinement techniques to the familiar and
important (easy to understand but non-trivial) problem of sorting. This chapter is
extensive and includes much detailed manipulation of large expressions. It is
important to emphasize that although such expressions (intermediate representations
of program segments) are long, the actual changes between one version and the next
are often very small. As a consequence, the presentation of a handful of simple
manipulations often takes up several pages. So don’t take these transformation
sequences at face value. In particular, don’t be put off by the length of some of the
derivation sequences.

In Chapter 8, we deal with Data Refinement. Essentially this addresses the
possibilities of using (internal) data types different from those used in the
specification, either input/output types or types within the pre- or post-conditions.

2 1 Later we shall refer to certain ‘specifications’ as ‘designs’ so as not to be thought of as changing a
specification.

Introduction 27

We illustrate data refinement, data transformation, and data structure replacement by
returning (in Chapter 9) to the topic of sorting. Although we make no pretence
that this is a book on data structures, we are able to draw out some useful
comparisons between the use of different structures in certain situations.

Of course, not all tactics are applicable to any given problem. In Chapter 10, we
discuss how the key tactics might fail and how they can be made to succeed. The
price paid to ‘fix’ the failure involves retaining more data than might strictly be
necessary. We briefly consider the removal of (some of) this data, and generally try
to store the necessary data more efficiently.

As noted earlier, we are not concerned with large, complicated, and very specialised
calculations (problems) as such but with explaining how to process a specification
that you may be given. Having said this, it is often useful to interact with a
customer to clarify the problem/specification and express it in a mutually acceptable
form. Chapter 11 includes two further large examples. Although these are much
less familiar than sorting, they are easy to understand (and can be explained
graphically) and further illustrate important aspects of algorithm synthesis in areas
perhaps unfamiliar to most readers. The chapter also includes a brief section on
some common classes of problems to which formal techniques have been applied
and that have served as a sounding board for the development of formal methods.

Finally, we have two stand-alone modules, Chapter 12 and the Appendix. Chapter
12 essentially describes (the building of) bridges between the computation of
functions and other activities undertaken by software and software systems. Our
order of presentation means the notion of a variable changing value could be deferred
until very late in the construction process; initially we had only to reason about
constant (but unknown) values. We can easily extend the work of Chapter 1 to
handle the specification of operations which necessitate changes of state; and this
includes conventional input/output operations.

But the development of a software system does not start with the specification of
the operations that it might perform but from a statement of the requirements that it
should meet. To do this we need new logical forms with which to state these
requirements and another level of design (between requirements and specifications),
associated notions of refinement and so on. We cannot deal with these topics in
this book, but we include a brief discussion of the ideas that need to be considered
within the formal synthesis of software systems.

The Appendix comprises a collection of the more important mathematical rules so
that the reader can cross-reference from elsewhere in the text. These include
transformation rules for manipulating program segments. They can be applied like
other rules, but their derivation (justification) is not included.

28 Constructing Correct Software

Chapter 1
The Technical Background

1.0 Introduction

Computationally, we are concerned here with any segment of code which carries out
a calculation and is executed between successive state changes (often in the guise of
input or output instructions). Performing a calculation is synonymous with
evaluating a function. Mathematically, a function is something that generates a
unique result from each acceptable data value. Regarded as a complete program, it
should be possible in principle to read all the required input into some ‘variable’
called x , evaluate f(x) — spoken “ f of x” — and then ‘write’ the answer.
Throughout Chapters 1 to 11, we shall only be concerned with the second of these
three phases. In particular, within the specifications, we will not be interested in
any changes of value. Most of our reasoning will involve values which are
constant but unknown.

So, computationally, an entire program can be regarded as a single assignment
statement such as yæ f(x), where x represents all the data, y all the results (distinct
from x and initially undefined, and hence this assignment is more properly an
initialisation of y , not a change or update) but f is perhaps not yet known
explicitly.

The purpose of this chapter is to lay down the mathematical framework that is
required in order to make our program constructions well-founded. In essence, what
we shall do is produce a program by performing mathematical manipulations upon
a formal specification of that program. To a reader with experience of modern
mathematics, particularly algebra, most of this lengthy chapter should be plain
sailing. However, one must be familiar with our terminology and notation.
Sections (and corresponding parts of the appendix) which are skipped may need to
be consulted later when detailed mathematical manipulations are undertaken in
subsequent chapters.

Initially, we try to avoid large amounts of detailed manipulation — though it will
be needed later — by introducing general concepts and giving a few instances;
further details can be found in the appendix.

In Section 1.1, we introduce functions, since functions are what programs compute,
and (binary) relations, since these will be used to specify functions. Also included
are details of the special notations we shall use to define specifications. Implicit
within these topics is the notion of a set. We shall use set notation but avoid lots
of technical detail. Here sets are merely collections of relevant items that can be
used as data and results of functions. Later, in Section 1.2, we shall extend these
sets into types (as found in programming languages) and define them by giving the
rules which can be used in manipulating descriptive expressions; these
manipulations form the basis of logical reasoning to justify that what we are doing
is legal and defensible. As will be apparent from this attempt at describing the
technical contents of this chapter, we really need all these ideas before we can start
to describe any of them. Hence there will be parts of the development which may
not be fully clear until later notions have been encountered. Please be patient — to
make the explanations completely, mathematically, water-tight would be to render
it extremely difficult for the newcomer to read.

Finally, in Section 1.3, we shall give a few examples and illustrations of what we
can do with the mathematical machinery we have introduced.

But first we make a few points concerning the need to pay attention to detail and
clarity in what we write, in English or mathematics.

The Need for Clarity

Computer Scientists (like pure mathematicians) are often accused of interpreting
language too literally. Whilst this often causes annoyance if used in inappropriate
circumstances, the subject of formal logic — which embraces the formal methods
of software construction — is one area where it should always be applied.
Everything we say about a piece of software should be capable of only one
interpretation, so ambiguity and unintended and unnecessary lack of precision has to
be avoided. Initial requirements and specifications of software often arise from a
non-computing context and are prone to imprecision. Before we can start
constructing software, we need an agreed and sufficiently precise description of what
is wanted. This is more properly the concern of a Requirements Engineer, but the
dividing line1 is very unclear. Suffice it to say that if through consultation with
the customer — the person for whom you are developing the software — you can
identify and resolve misunderstandings and vagaries, then we can save much wasted
time and effort. It serves nobody well to spend time solving the wrong problem or
building the wrong system. We must also avoid over-specification and not include
any unnecessary constraints.

1 Between requirements and a specification.

32 Constructing Correct Software

We do allow non-determinism and intended vagueness where detail does not matter
(i.e., don’t be more specific than necessary; allow for choice and variation when
possible).

In a very simplistic way, this can be identified with the sloppy use of natural
language. Below we give some ‘silly’ examples. They are silly because we can
easily see what the problem is. In extensive textual descriptions of software
requirements (which may occupy many pages or even volumes of detailed
explanations), similar situations will not be so obvious. Indeed, such lengthy
descriptions may be so long that nobody ever reads them fully and hence they may
be a complete waste of time. What we need are descriptions that tell us all we need
to know in as concise a fashion as possible. The following examples illustrate
inexact statements and questions which can be resolved either by more careful use
of English (or any other natural language, but we shall use English) or by using a
more stylised, more formal and mathematical, representation.

Did it rain in Trafalgar Square on January 1st 1997, or not?

Regardless of how we define ‘is raining’, the answer to this question is always
“yes” since it either did rain or it did not, and thus the question is of no use. The
question which should have been asked was:

Did it rain in Trafalgar Square on January 1st 1997?
The answer “yes”

tells us that it did indeed rain, and the answer “no” that it did not.

Now look at the following. It is a notice that used to appear in a local cafeteria.

TRAY SYSTEM

PLEASE DO NOT REMOVE
YOUR MEAL FROM THE TRAY

PLEASE PUT THE TRAY ON TO THE
CONVEYOR AFTER YOUR MEAL

THANK YOU

You really can have some fun with this. How can you eat a meal without removing
it from the tray? (Is the meal the same as the food?) If you put the tray onto the
conveyor after your meal, does this imply that you have already put your meal onto
the conveyor? (And the meal is still on the tray, remember.) Can you devise an
unambiguous (punctuated!) directive which defines a possible and sensible course of
action?

Technical Background 33

Proper punctuation is very important. If it helps to disambiguate a sentence and
bind some parts of it more strongly together, you can employ brackets.

Now consider the use of the same linguistic construct in two different contexts.
If you ride a motorcycle, then you must abide by the instruction

“Helmets must be worn.”

When travelling on the London Underground, you will see the sign

“Dogs must be carried on the escalator.”

Clearly the word “must’ is used in a different way; other, unstated assumptions
come into play. Can you imagine the chaos that would ensue if you had to find a
dog to carry before you stepped onto an escalator, or you were to be excused from
wearing a helmet when riding your motor cycle simply because you didn’t have
one?

The fix is quite easy; you merely need to change the second instruction to

“When on the escalator, if you have a dog with you then it should be carried.”

You will doubtless be able to think of many other situations which include logical
nonsense or rely upon unstated assumptions in order to make sense. As we
introduce more mathematically descriptive notations, you should be able to re-
express them in formal, and concise, terms which encapsulate the essential
information in a compact fashion. It is crucially important that all statements about
software only have one interpretation, which can be clearly and quickly(?) deduced
by all those who need to consult it.

The drawing up of specifications (and requirements) is not the concern of the current
text; it is, however, necessary that appropriate specifications be available to us
before we embark on the construction of software. Our principal aim is to build
software that is correct with reference to a given specification (or a statement of
requirements), that no errors are introduced as the software artefacts are engineered.

Intentionally, most of our examples are simple so that we don’t have to spend
much time investigating the problem but can concentrate on deriving solutions.

34 Constructing Correct Software

The techniques presented are applicable to problems which are more complicated 2

(harder to describe) and perhaps presented in a textual form. Whenever such
(potentially ambiguous, incomplete, or just plain wrong) descriptions are given,
you must spend time ascertaining what is really meant and, perhaps in negotiation
with its originator, modify them as necessary so that they mean exactly what was
intended. Ultimately, using notations similar to those to be found in the sequel,
you should be able to express these descriptions in a formal (‘mathematical’)
fashion susceptible to manipulation and computation.

1.1 Functions, Relations and Specifications

These three entities are introduced in an order that is convenient to us. It is not the
conventional order in which they would be presented in a mathematical text, and we
only include directly relevant material. Remember that although our presentation is
necessarily much more formal than that found in other areas of computing, this is
not a maths text.

The fundamental property of a function is that, given an acceptable input value, it
delivers a unique result. Pictorially, skating over other details, we cannot have the
situation represented in Figure 1.1:

x

y

z

Figure 1.1

So, if f is a function and we are told that y is a value of f(x) and also that z is a
value of f(x), then it must be the case that y and z are actually the same.

2 In much the same way that structured programming was initially thought by many programmers to
be applicable only to certain classes of ‘nice’ (‘toy’?) problems, you may think that these statements
apply only to a restricted collection of problems. This is not so, but to apply what we have to say to
more complex problems does require that you understand such problems much more deeply than
when using less formal, less scientific, less mathematical methods. Formal methods bring any lack of
understanding to the fore.

Technical Background 35

Making sure that we don’t have situations like that above, the full picture for f
might be:

Figure 1.2

We draw all the arrows from right to left. This in itself is not important but what
in general is important is that we can distinguish the values which can be placed at
the start of an arrow (the input values) and those at the sharp end (result values).
Notice that two arrows might point to the same result, and not all of the data
points or result points are necessarily used.

Other kinds of diagram are sometimes used, as we shall see. Here, so as not to mix
up data and results, we often enclose the two sets (yes sets) of values in non-
overlapping closed curves such as ovals, as in Figure 1.3. [If the same value is
required as both an input and output, then we make two copies and put one in the
input set and one in the output set.]

Figure 1.3

36 Constructing Correct Software

For the function f to be consistent with a specification, the specification must
include all the ‘arrows’ of f but might also have many others. The specification of
a function is in fact a binary relation 3. As far as we are concerned, this can be
regarded as a generalisation of a function. (Of course we shall want eventually to
start with the relation and reduce it to a function, but more on that later. Here we
are only introducing concepts, terminology and notation — if the pictures make
sense, all is well).

[Note that many programming languages have a so-called ‘random’ function which
can apparently give different results. Of course it does not give random results at
all but is driven by input values that are hidden from us, and for each input it gives
the same result every time.]

So, the specification of a function is a binary relation which may be represented
by arrows as in Figure 1.4. So as to make it easier to talk about the arrows, we
now label the input (data) set and output (results) set. Suppose that we use the
names X and Y for the sets in this example.

Although the relation (the arrows) in Figure 1.4 could be reversed — by simply
turning all the arrows around — to give a perfectly valid relation, the direction is
usually important; we want to derive results from data values, not vice versa.

X Y

Figure 1.4

3 We make no distinction between specifications and binary relations. Associated terminology can
be interchanged . The word “binary” simply indicates that there are two sets involved, X and Y in
Figure 1.4.

Technical Background 37

Now consider Figure 1.5.

X Y

x

y

S

Figure 1.5

Stand by for a blast of terminology and notation.
• The arrow, from x to y, is represented by an ordered pair, written ”x,y’

(spoken as “the pair x,y” or simply “x y”).
• The set of all possible arrows between X and Y is written as X Ù Y
 (this is the Cartesian product of X and Y, and is spoken “X cross Y”)

So ”x,y’ ˜ X Ù Y (i.e. “the ‘arrow’ x,y is an element of the set X cross Y”),
and therefore x˜X and y˜Y.

Now the specification S, as shown on Figure 1.5, is simply a collection of arrows
in X Ù Y. Hence we can also write

S · X Ù Y. (that is “S is a subset4 of X Ù Y”)

Although we can represent certain ideas and principles using pictures (diagrams),
most actual cases involve very large sets, and hence we can never adequately
represent the situation in all its detail by a picture. In principle, we could define a
particular specification by writing down all the arrows (all the ordered pairs) that it
contained. Some relations, for instance the relations that are held in a relational
database, have to be represented in this way. Within software requirements and
specifications, it is more often the case, and it is much more convenient, to define a
relation, S (say), by a test (a condition, a predicate) so that the pair ”x,y’ satisfies
the test exactly when ”x,y’ ˜ S.

4 i.e. all the elements of S are also elements of X Ù Y.

38 Constructing Correct Software

We have one last link to put into place before we can write down some proper
examples of specifications. Notice that “”x,y’ ˜ S” is a mathematical
expression which may either be True or False. [The values “true” and “false” are of
particular importance and, so as to distinguish them from normal English usage we
shall, when using them mathematically, begin them with a capital letter.]

”x,y’ ˜ S is True if S does contain the arrow ”x,y’.

”x,y’ ˜ S is False if S does not contain the arrow ”x,y’.

This second case can also be written:

”x,y’ μ S (spoken “x,y is not (an element) in S”).

In certain situations, we wish to indicate that an element is, by definition, included
in a given set. Indeed, this is a way of introducing a new identifier, a named value.
Referring back to Figure 1.5, instead of asking whether x was an element of X
(i.e., if x˜X is True), we could write x:X and say “x is of type X”. This fits with
the common usage of this syntax in many programming languages and, as we shall
see in Section 1.2, a type is a set (together with some extra machinery).

In much the same way as “:” is used to identify the type of a new value or name,
we can use “–” (an equals symbol together with the Greek capital delta) to indicate
that a new name is, by definition, equal to some known value; the value possibly
indicated by an expression. We can now introduce the notation associated with the
concept of a set, already mentioned informally in passing. Sets can be defined in
several ways, and here we shall use two. Firstly, a (small) set can be defined
explicitly; for example:

A – {1,2,3,5,7,9} All the elements of the set are written out.

 “A is (defined to be) the set (of all the numbers) 1,2,3,5,7 and 9.”

Similarly, let B be defined by:

B – {1,2,4,6,8}

Then we can define T, implicitly, by

T – {”x,y’:A Ù B | x < y}

 “T is the set of all x,y pairs (of type A Ù B) such that (‘|’) x<y.”

Technical Background 39

Following on from these definitions we can write A Ù B and T explicitly:

A Ù B is the set {”1,1’ , ”2,1’ , ”3,1’ , ”5,1’ , ”7,1’ , ”9,1’ ,
”1,2’ , ”2,2’ , ”3,2’ , ”5,2’ , ”7,2’ , ”9,2’ ,
”1,4’ , ”2,4’ , ”3,4’ , ”5,4’ , ”7,4’ , ”9,4’ ,
”1,6’ , ”2,6’ , ”3,6’ , ”5,6’ , ”7,6’ , ”9,6’ ,
”1,8’ , ”2,8’ , ”3,8’ , ”5,8’ , ”7,8’ , ”9,8’ }

and
T is the set {

”1,2’ ,
”1,4’ , ”2,4’ , ”3,4’ ,
”1,6’ , ”2,6’ , ”3,6’ , ”5,6’ ,
”1,8’ , ”2,8’ , ”3,8’ , ”5,8’ , ”7,8’ }

or, in a more usual, but perhaps less comprehensible, form5:

{ ”1,2’ , ”1,4’ , ”2,4’ , ”3,4’ , ”1,6’ , ”2,6’ , ”3,6’ ,
”5,6’ , ”1,8’ , ”2,8’ , ”3,8’ , ”5,8’ , ”7,8’ }

Notice that the relation T, and in fact any relation, is also a set. Notice also that
the implicit form is usually much more compact and will be more suitable for
‘manipulation’ than the explicit form.

Although not yet expressed in the usual form for a specification, we now have all
the essential information. The general form of a (binary) relation between A
and B looks like:

{”x,y’:A Ù B | p(x,y) }
where p is a predicate, here written as an

expression involving x and y. This is required to evaluate to True or False for all
values x:A and y:B (for all values x of type A and values y of type B). So p is
really a decision procedure, and within a relation used as a specification, it is
exactly the decision procedure that we would need to test “whether y is an
acceptable result from the input x”.

Gradually, we want to formalise expressions so that they are properly structured
(their syntax is well-defined) and all components are of acceptable types. The
predicate p used above has a function type. The inputs to p are of the type A Ù B
and its outputs are drawn from the set {True, False}. The set {True, False} has a
special name, the Booleans, and is denoted by the symbol . The type
information for p can then be represented as:

p: A Ù B —
The “—” is spoken as “to” so p is of type “A cross B to Boolean”.
5 A layout which helps you see the real structure of data, or of an expression, can be very useful.
Just like ‘pretty printing’ program texts.

40 Constructing Correct Software

[Lest we forget to include all relevant type information, we give here the notation
and terminology associated with relations. Most relations that we shall encounter
will be binary relations, and hence we shall not explicitly mention that fact.

(A) is defined to be the set of all subsets of (the set or type) A and is
called the powerset of A, so

x ˜ (A) is the same as x · A.

Now if X and Y are given types, T, a relation between X and Y (in that order) we
indicate its type by:

T: (X Ù Y)
“T is of type ‘powerset of X cross Y’ ”, or more simply,
“T is a subset of X Ù Y”, or even
“T is a relation between X and Y”

 — but remember that this is type information.

Without the type of any entity, we do not know what operations/functions can be
applied to it.]

Now for a few simple numerical examples. For these we introduce the (local) types
X and Y and assume the usual, as yet unjustified, properties of numbers.

X – {1,2,3,4}
Y – {1,2,3,4,5,6}

Consider the following three binary relations (specifications):

R1 –{”x,y’: X Ù Y | x = y + 1}

R2 –{”x,y’: X Ù Y | x – 1 < y ≤ x + 1}

R3 –{”x,y’: Y Ù Y | x = y + 1}

These are all very straightforward and simple, and are subtly different. To illustrate
and emphasize the differences we shall introduce another kind of diagram — similar
to the traditional graphs used to depict functions of a real variable. This will also
serve as a vehicle to introduce more terminology.

In relation R1, the input value, x, is of type X . X is the source of R1 (the set

from which input values may be selected). Similarly, Y is the target of R1 (the

set of potential results). It is important to know that, even if these sets are the
same as one another, different source and target sets can give rise to different
relations even when the ‘same formula’ is used in the definition.

Technical Background 41

4

6

321

R1

source (x)

target (y)
4

3

2

1

5

Figure 1.6

The interpretation of Figure 1.6 is quite straightforward. The dot at the intersection
of lines representing x = 2 and y = 1 represents the arrow from 2 to 1 and indicates
that ”2,1’ ˜ R1.

4

6

321

R2

source (x)

target (y)
4

3

2

1

5

Figure 1.7

R2 –{”x,y’: X Ù Y | x – 1 < y ≤ x + 1}

Notice that this relation is not a function since ”2,2’ ˜ R2 and ”2,3’ ˜ R2 but

2 ≠3, (see Figure 1.7).

42 Constructing Correct Software

4

6

321

R3

source (x)

target (y)
4

3

2

1

5

5 6

Figure 1.8

R3 –{”x,y’: X Ù Y | x = y + 1}

Notice that R3 (in Figure 1.8) is not the same as R1. Even though the same

‘formula’ is used in both relations 6. Their targets are different and hence their types
are different.

So much for specifications purely as relations. Computationally, we wish to
proceed from left to right (as in Figure 1.5), from input to output, and we need to
avoid taking a source value x and failing to find any ‘x to y’ pair in the relation.
Therefore, we shall want to take notice of the direction of the arrows. To make the
distinction, we must first identify the set of all source values which do correspond
to a proper connection within the (binary) relation. This is called the domain of
the relation. The domain of R, denoted by R and read as “the domain of R”,

might be thought of as:

R – {x:X | ”x,y’˜R } where R: (X Ù Y)

(i.e., the set of all possible values, x, in X, such that there is an x y “arrow” in R)

This is basically right, but y seems to have just materialised out of thin air. Is y a
new value, a new name, or has it been introduced somewhere else? What would we
assume if such a construction appeared within a program? Actually, what we want
to say is that y is an appropriate value from the target set Y and is a new name.

6 These two relations are in fact functions — no point in the source corresponds to more than one
point in the target. Another way of representing the point-to-point connections in a function is by
using maplets as i.e., R3 = { 2Ÿ1, 3Ÿ2, 4Ÿ3, 5Ÿ4, 6Ÿ5 }.

Technical Background 43

Even if another y exists, this one is new . In programming terms, its scope is
“| }” and it does not exist outside of these symbols, and within them it
hides any other y which might have been introduced earlier. This is a notation
from logic that corresponds exactly to this familiar concept of scope from block-
structured programming languages. Fuller explanations will be given later; for
now this is simply helping to describe what the y is all about.

R – {x:X | (∃y:Y)(”x,y’˜R) } where R: (X Ù Y)

 “The domain of R is the set of all x’s (of type X) such that, for each x,
there exists a y of type Y, ‘(∃y:Y)’, where the pair ”x,y’ is in R”

The syntax (the layout) used here will probably be strange to anyone who has not
encountered formal logic. The brackets are merely to help indicate the scope in
which y can be used.

 (∃y:Y) (”x,y’˜R) - usually written without the gap in the middle -

means “that there is some value of type Y, we call it ‘y’,
such that the expression ‘”x,y’˜R’ is True”.

[The logical notion of “existential quantification” (the symbol ∃) works in exactly
the same way as local variables in block-structured programming languages
— no more, no less. Here the brackets surrounding “”x,y’˜R” indicate the scope
of the new y, and again the layout is slightly different.]

Also defined is the mirror-image concept of the range of the relation R . This is
written R and is defined:

R – {y:Y | (∃x:X)(”x,y’˜R) } where R: (X Ù Y)

This gives the set of all values in Y that are to be found at the pointed end of the
arrows which comprise R. The relationships between these different sets are
illustrated in Figure 1.9. In this figure, the relation R1 is used as the example.

44 Constructing Correct Software

1

6

5

4

3

2

1

R1

Domain

Range

2 3 4

◊
◊
◊

◊
◊

◊
◊◊ ◊

Figure 1.9

Referring to the figure and definition of R1,

R1 –{”x,y’: X Ù Y | x = y + 1 }

it is clear that it is fruitless to attempt
to find an answer (an answer compatible with R1) starting from the value 1 as

input. The condition that the data value x does ‘work’, i.e. that x is in the domain,
is:

x > 1 .

This condition, often called the weakest pre-condition and denoted by wp(R1),

is the least restrictive condition upon values of the appropriate source type for
which the specification includes ‘answers’. Notice that this condition is derived
from the relation and hence is, in some sense, ‘going backwards’, from output
values to inputs. Whilst in general it is absolutely necessary that this condition be
met — and sometimes, when it is not known from the outset exactly what this
condition is, it may only become clear as software development is under way — we
might use a stronger condition derived from the context in which an
implementation of R1 is to be used.

[Some asides: (1). We shall encounter situations where one function is applied
after another. There is a special notation for this, and here is a convenient place to
give it. “g°f ” is spoken “g over f ”or “g of f ” and is defined by:

(g°f)(x) – g (f(x)) where f :X — Y

g:Y — Z
and f · g

We can then apply (the function) g to any result given by applying (the function) f
to any value x where x ˜ f, and hence have “g of f (of x)”.

Technical Background 45

(2). Two functions, f and g:X — Y are equal if f = g and f(x) = g(x) for

all x ˜ f, written ‘f = g’.

(3). An important property of ‘°’, of functional composition, is that when (say)

f:A — B, g:B — C, and h:C — D and f · g and g · h, so that

when x ˜ f, h(g(f(x))) is properly defined. It follows that (h ° g) ° f = h ° (g ° f).

We say that functional composition is associative. (We shall meet this term
again in familiar circumstances.)

(4). It is also convenient here to give the definition of the graph of a function.
The distinction between a function and its graph is often blurred, but here goes.

Given a function f of type X — Y, the graph of f is the relation (which is of type
(X Ù Y)) consisting of the pairs ”x, f(x)’ for all x for which f(x) exists.]

Suppose now that x, the input value for R1, is known to be greater than 2. This is

OK since “if x > 2 then x > 1” and the wp condition is met, but so we don’t spend
effort working out a result for x = 2 (which will never be used) we can use the
relation

{”x,y’: X Ù X | x > 2 and x = y + 1}

Of course, and is a logical connective, a logical operator, and we shall say much
more about such things later. Here we concentrate on the bare minimum.

The values of x > 2 and x = y + 1 and x = y + 1 and x > 2
should surely be the same. But if we investigate the ‘x = y + 1’ component first,
we have gained nothing, we may have derived a value which must now be rejected
(i.e., the y = 1 associated with x = 2, but 2 > 2 is False). For the constraint on the
source values to be of benefit, it must be examined first. In the context of a
Boolean expression, we write this as:

x > 2 x = y + 1 spoken “x > 2 and_then x = y + 1”.

In full, this is interpreted as:

“if x > 2
 then

if x = y + 1 then True else False fi7

 else
False

 fi”.
7 So as to avoid potential parsing - bracketing - problems ‘fi’ is used to indicate the end of the ‘if
then else’ construction; the ‘fi’ indicating the end of the ‘else’ part of the expression.

46 Constructing Correct Software

The order of evaluation is strictly left to right and if ‘x > 2’ is False then no further
evaluation is done; the answer is False and the ‘x = y + 1’ component is ignored.
As will become apparent later on, an expression in this position may fail to be
either True or False and hence would generate an error if we actually tried to work it
out (needlessly).

So, after going around the houses and discussing the mathematical entities involved
we can represent the relation

{”x,y’: X Ù Y | x > 2 x = y + 1}
in a more usual (specification) form as:

function_name: X — Y
pre-function_name(x) – x > 2
post-function_name(x,y) – x = y + 1

The first line introduces the name of the function being specified and tells us the
source and target. Next we have the pre-condition (so called because it can be
checked before execution of the function commences); it must be possible to
evaluate this for all values x of the relevant type, here X8.

So the pre-condition is a function and its type is indicated by:

pre-function_name: X —

For all values of x for which pre-function_name(x) = True, and all values of y (of
type Y), we should be able to evaluate the post-condition. This tells us, implicitly,
which values of y would be acceptable results from function_name(x) once we
know that the value of x is acceptable. It is a partial logical function (a predicate) of
two variables. Its type is indicated thus:

post-function_name: X Ù Y —

These specification components are sufficient in any situation that is not required to
indicate a desired change of value.

Mathematically, for the purposes of actually performing calculations, we have:

spec-function_name9 – {”x,y’: X Ù Y | x > 2 x = y + 1}

which is an instance of the general situation
i.e.,

spec-function_name –

 {”x,y’: X Ù Y | pre-function_name post-function_name}.

8 A function of type X — Y with f = X is said to be a total function or mapping. When f is a

mapping, pre-f(x) – True, and the pre-condition may be omitted without information loss.
9 So clearly the specification is a subset of X Ù Y and is of type (X Ù Y).

Technical Background 47

For documentation purposes, other ways of displaying the components are used,
such as:

function_name: x:X — y:Y
pre – x > 2
post – x = y + 1

or
spec-function_name – [pre-function_name, post-function_name]

where pre-function_name(x:X) – x > 2
post-function_name(x:X,y:Y) – x = y + 1

or
 spec-function_name: (X Ù Y) – [pre-function_name, post-function_name]

where pre-function_name(x) – x > 2
post-function_name(x,y) – x = y + 1

or even, using an alternative notation for functions10

spec-function_name – [pre-function_name, post-function_name]

where pre-function_name – (¬x:X)(x > 2)
post-function_name – (¬”x,y’:XÙY)(x = y + 1)

Exercises
Although we have only met a very limited collection of operators so far, try the
following exercises.

1.1 Assuming that x and y are of type 0..10 i.e. {0,1,2,3,4,5,6,7,8,9,10}, consider
the post-conditions below:

post-double(x,y) – y = 2*x
post-is_even(x,b)11 – b › (∃z:0..10)(x = 2*z)
post-half(x,y) – x = 2*y
post-different(x,y) – y ≠ x
post-greater(x,y) – y > x
post-two_away(x,y) – y = x – 2 or y = x + 2

For each, identify the domain and range and give the (weakest) pre-condition.

1 0 If you have not met this notation before then skip this paragraph. It will be defined later.
1 1 If the symbol ‘›’ is new to you just consider it to be ‘=’. All will be explained in Section 1.2.

48 Constructing Correct Software

1.2 Now, using the type 0..10 for inputs and for outputs, have a go at
specifying the functions below. The intended meaning should be clear from the
name, but can you formalise it?

greater_than_5
divisible_by_3
is_prime
is_product_of_two_distinct_primes

Now repeat the exercises, using the same post-conditions but with , the integers
— all the whole numbers — instead of 1..10.

❑

1.1.1 Summary of Features

The purpose of ‘pre’ is to reassure the evaluation mechanism that if the input value
satisfies this condition, then the calculation can proceed satisfactorily. The logical
link between pre-f and post-f is something like:

if pre-f(x) then (∃y:Y)(post-f(x,y) fi

but finding a suitable y can be problematic and involve an extensive search, even
one that gives rise to error situations, since the post-condition may not be defined
for all values in X Ù Y. To avoid such errors requires that y be introduced only
when the pre-condition is True. To achieve this, we need to know the rules
associated with the ‘’ operator; and is therefore deferred until section 1.4.2.4.
However, we can use this link as an implicit definition of y, and this is the stance
we shall adopt in synthesising programs from specifications.

Now suppose we had a specification of a function f, of type X — Y, and we were
given:

pre-f(x) – (∃y:Y)(post-f(x,y))

Here, the need to know if there is an answer is logically equivalent to being able to
find one. (Just read this pre-condition. It says “x is a valid input if there exists a y
which is a valid answer from the input x”.) But this implies that we have to do the
calculation to find out whether we can get an answer before we begin the
calculation to get the answer.

We should therefore not knowingly utilise f within its own pre-condition. We can
attempt to circumvent this by running the test on the acceptability of the data and
working on the calculation at the same time. Of course, if the data turns out to be
unacceptable, then the calculation will fail. We shall return to this discussion
several times in the sequel.

Technical Background 49

1.1.2 Guidelines for Specifications

Within the development process, we are not allowed to ignore (or contravene) any
of the constraints included in the specification. Therefore, it is extremely important
that the specification should be as abstract as possible. Essentially, the
specification provides the means by which the correctness of the derived software
will be judged. Put another way, the creation of the specification, from an informal
statement of the requirement, is where testing should be done 12. It is human nature
to repeat the same mistakes over and over again; we see exactly what we want to
see. Therefore, it is good practice to get someone else to try to ‘break’ your
specification. In a learning situation, this is easy to arrange — work in pairs and
try to find errors in, and construct counter-examples to, each others specifications.
In other situations, it is perhaps a good idea to leave a (part of a) specification, do
something else, and return to it after your mind has been occupied with another
problem.

One problem which we have already encountered concerns the robustness of a
program or system. As part of the specification for a program, we need to know
the set of values (not necessarily numerical values, just the set of all valid inputs)
to which the program is required to respond. Anything else may cause it to fail and
is not our concern!

Removing logical redundancy within a specification means that it is ‘smaller’ and
easier to check and to manipulate. [Subsequently we may wish to transform a
mathematical expression into a particular form for a particular purpose, seemingly
‘going backwards’. But this will be for a specific reason and will be under our
control, not inflicted by the customer.] Being as concise as possible (without
being needlessly cryptic) is also desirable, as you will see.

It may seem that we are making a meal of this, but it is very important that the
terminology be understood (and memorised). Notation is less important (within
software engineering, many different notations are used for the same concept) but
how to read the notation is important. If you come across some notation which
you cannot remember, then look it up and remind yourself how it should be
“spoken”. Otherwise you will eventually come across a combination that you
might only interpret as “an upside down a, an x, a v with an arrow at the right-hand
side, a b, and” and which you have absolutely no chance of understanding.

1 2 By whatever means is deemed appropriate, the creator of the specification needs to assure himself
that the ‘arrows’ or ‘dots’ in the relation that underlies the specification do correspond to
allowed/desired pairs and that any pair not required is not included. This is passing the buck, but the
specification is much simpler than any software that results from the synthesis process and hence
easier to ‘test’. Our purpose is to ensure that no errors are introduced from here on.

50 Constructing Correct Software

1.2 Equational Reasoning and Types

We now look at how expressions used to define functions or specifications,
expressions of ‘any’ type, can be manipulated13. So this is really algebra; we
develop the ‘machinery’ of transformation and present sets of equational rules
sufficient to explain the manipulations used in our synthesis of programs. Having
said that, it is not our intention to give a fully constructive basis for all the
mathematical entities used. We could start with any set of rules; it need not be the
smallest, most fundamental set possible.

We introduce a powerful and general mathematical device that will facilitate both
algebraic calculations and proofs. It is based on the notion of textual substitution
and in a logical (reasoning) situation is called equational reasoning14.

When the basic idea has been mastered, it can be used time and time again.
Initially it will probably be regarded as very tedious, extremely long-winded, and
even ‘obvious’ — and it is! But there are two important points that must be made.
Firstly, we cannot bail out and claim that something is ‘obvious’; that word is
strictly forbidden in any argument about correctness. If a claim really is obvious,
then it should be easy to justify. If it cannot be justified by a short formal
argument, then perhaps it is not obvious and may even be wrong. Secondly, if we
find ourselves repeating essentially the same work on numerous occasions, then we
can do some side-work and create a new rule which can then be used to cut out this
repetition. This is a simple instance of the concept of re-use — re-use of a piece
of logic, a piece of program design development and so on.

As with most concepts associated with computing, equational reasoning is a
simple idea but can be difficult to express and explain in its most general form.
Before attempting a technical definition, we give a simple example of a
transformation sequence. This may be regarded as a ‘simplification’ but here we
shall make no pronouncement about what is simple and what is complex. These
‘calculation’ are presented as a list of equivalent expressions separated by ‘¢’
symbols.

Suppose that x and y are two (constant but unknown) integers. This information
is represented as x,y: . We need to know that x and y are integers because only
“integer rules” can be used in their manipulation. Now we take the expression
(x + y) + (x – y). This should simplify to 2x (or in more familiar computer-
oriented syntax, 2*x), but why, how? We ‘walk through’ the sequence of algebraic
expressions and annotate the derivation with mathematical justifications.

1 3 At a first reading we suggest that you sample the major types (Integers, as a familiar beginning,
and then Booleans and Lists). Other types and operators can be studied as required.
1 4 This is also called ‘Term Re-writing’ or, more simply ‘algebraic manipulation’.

Technical Background 51

(x + y) + (x – y)
— read “¢” as “..has the same value as..”
(for + we can re-bracket but keep the numbers in

¢ (the same order and position.
(This is called associativity.

x + (y + (x – y))

— “ –y represents ‘negative y’ ”
(replace subtraction by addition and negation.

¢ (–y is the number which you need to
(add to y to get zero.

x + (y + (x + –y))
(now we can swap the order of two adjacent

¢ (numbers which are to be added together.
(This is called commutativity.

x + (y + (–y + x))
(now we can use associativity (of +) again, so as

¢ (to get y and –y next to each other.

x + ((y + –y) + x)

(now we can use the property of –y to combine
¢ (with y and get 0.

x + (0 + x)
(now ‘+ing’ 0 to a number has no effect,

¢ (so ‘0 +’ effectively disappears.
(This is exactly what subtraction is all about.

x + x
(Having just removed 0 we now go in the
(opposite direction and introduce the number 1,

¢ (which behaves in the same way with *
(multiplication as 0 did with +.

(1 * x) + (1 * x)
(now factorise so as to do the addition before

¢ (multiplication.
(1 + 1) * x

(this is simple arithmetic, with known constants.
¢ (2 is defined to be the result of adding 1 to 1.

2 * x

52 Constructing Correct Software

You should convince yourself that each line is an ‘acceptable’ re-formulation of the
previous one 15. (The juggling of brackets might seem to be rather arbitrary and
unnecessarily tedious. Draw the structure/type tree associated with each line and
you will see that the changes are quite significant — a significance often hidden in
the textual form.) Thus far, the example is merely to illustrate the way in which
equational reasoning, or a transformational sequence, is presented.

Of course all the steps involved in these ‘calculations’ need to be explained and
justified. There is actually a lot going on here, most of which we take for granted,
probably without fully understanding the properties of the operators and relations
within the expressions.

Lists of the major properties of the common data types are given in the Appendix.

Notice that these ‘calculations’ are presented as a progression of expressions of the
same type and all having the same value.
So we may write:

a ¢ b ¢ c ¢ d ¢ e
which means

a ¢ b
and

b ¢ c
and

c ¢ d
and

d ¢ e

Now the operator ¢ between expressions (of the same type) is transitive. Put
simply, this means that if

a ¢ b ¢ c ¢ d ¢ e.
then a has the same value (and is of the same type) as b, which has the same value
as c, which has the same value as d, which has the same value as e. Thus a has
the same value as c, a has the same value as d, and a has the same value as e.
So, symbolically,

a ¢ c

a ¢ d

a ¢ e

1 5 At this stage, the mathematical ‘justifications’ are not so important, but eventually it will be very
convenient to use such terminology. These and other terms will be used to describe rules within the
definitions of (data) types. We shall not usually include explicit justification or explanation when
rules are applied, but you should always be able to cite such a rule if challenged.

Technical Background 53

We can omit the intermediate working (once we know that there are valid ‘stepping
stones’) and replace this sequence with the single transformation

a ¢ e

Moreover, we can save the derived transformation (perhaps together with its
derivation, just for reference) and re-use it in any appropriate context. So, we could
now write:

(x + y) + (x – y) ¢ 2*x

and use this as a perfectly valid transformation rule in its own right. We need not
repeat the earlier working.

Any global assumption p can be used as a rule, represented in the form:

p ¢ True

And in rule sets, inclusion of the Boolean expression p indicates validity of the
rule

p ¢ True.

Also, we may have conditional rules such as

x * y = x * z ¢ y = z provided that x ≠ 0.

We write this as:
 (x ≠ 0) x * y = x * z ¢ y = z

Similarly, if the property p is conditional upon c being True, we represent it thus:

 (c)16 p (¢ True)

If the condition does not hold, then the rule is simply not available.

Other (expected?) properties of ‘¢’ include

a ¢ a for any a ‘¢ ’ is reflexive
and

if a ¢ b
then b ¢ a. ‘¢ ’ is symmetric.

1 6 If c is a complex condition, it may only be partially evaluated. See Section 1.4.2.4 and/or Section
A.0 of the Appendix for more details.

54 Constructing Correct Software

Given a set of rules such as this, the basic idea is to replace a sub-expression with
another (of the same type) which, when evaluated with any legal (allowed) and
consistent substitutions, always gives the same value as the original sub-
expression. We discuss and justify such manipulations below.

Of course ‘¢’ is closely related to ‘=’ but we use ‘¢’ so as to be different (i.e., so
as not to use a symbol which that legitimately appear in any specification or
program. The poor old ‘=’ symbol is greatly overused anyway so we don’t want to
contribute further to the confusion that already exists. The ‘=’ sign may be
indicating that two quantities are equal (or even asking the question, “are they
equal?”), whereas the ‘¢’ symbol is used to separate the two parts of a rewrite
rule, or to indicate that such a (transformation) rule is being applied so that one
expression is transformed into another (of the same type and, when fully evaluated,
the same value). Additionally (and implicitly) we also need to have syntactic
equality (i.e., exactly the same sequence of significant characters — omitting
irrelevant spaces, etc.) and this covers equality of values when their representations
are unique. We shall also presume the existence of the universal rule

“text” = “text” ¢ True
for any17 piece of text which

represents a valid — well-formed — expression.

Brackets will rarely be mentioned within the syntax but can be used with all types
so as to clarify or disambiguate the linear textual form associated with a particular
structure/type tree.

1.3 The Origin and Application of Rules

Most rules that are used within a transformation sequence are not rules which have
been given explicitly, nor are they applied to entire expressions. They are more
often rules derived from some “meta-rule” (a more ‘general’ rule) and applied to just
a part of the expression under consideration. Rule sets associated with particular
data types are outlined later in this chapter and given more fully in the Appendix.
First we say something about other ways of introducing transformation rules and
explain how the substitutions are carried out. An understanding of this process is
necessary to appreciate how some software engineering tools work and to resolve
any conflicts which might arise when trying to justify a particular piece of
calculation.

Suppose we are given expressions x and y (which contain only constants, and both
evaluate to a value of the same type, T), then we say that x = y (by definition!) if

1 7 There is one exception, which will be discussed in Section 1.4.2.4.

Technical Background 55

they both evaluate to the same value, which will be of type T. Thus we have the
general conditional rules:

(x – y) x ¢ y (see18)
and

(x = y) x ¢ y

The way in which ‘=’ is evaluated depends on either textual equivalence or the rules
that define the type T. Rules for common types will be given later.

Now suppose that we have two functions f and g of the same type X — Y. From
the definition of a function, it follows that

(x = y) f(x) ¢ f(y)

Moreover, from the definition of equality between functions

f = g – (∀x:X)19 (f(x) = g(x)) see20

we have
(f = g) f(x) ¢ g(x)

Recall also that we can introduce new data names as well as our own macro and
function definitions, and functions can be thought of as parameterised expressions.
And once we have introduced a new name for something, we can swap between the
old and new representations at will by using the conditional rule (conditional upon
the definition ‘x – y’, where x is some new entity, perhaps having parameters and
y is an expression). We now apply this process to justify general substitutions
within a larger expression.

Given the definition

inc_by_2(x) – x + 2

the value of ‘ inc_by_2(x)’ is defined to be equal to the value of ‘x + 2’ and we
immediately have the rule

inc_by_2(x) ¢ x + 2
1 8 Note that this is not a proper conditional rule, it merely looks like one. x – y is not a Boolean
expression but an agreed statement of fact, a declaration of the meaning of x, and hence x = y is True
by definition.
1 9 ‘∀x:X’ is read as ‘for all x of type X’. ‘∀’ is the universal quantifier and will be discussed further
when needed.
2 0 From this definition it follows that f = g. If f is total (i.e. if f = X) then function equality

follows from the equality defined on type Y; however, if x˜X \ f, — that is, x˜X and xμ f, see
Section 1.4.3 — then we say that f(x) is identified with a special value ⊥Y, called ‘the undefined value
of type Y’ — not to be confused with the value of type to be discussed shortly. This is a technical
fix which we can now ignore until Chapter 12. There is also an alternative formulation in the
appendix which uses other, as yet undefined, operators.

56 Constructing Correct Software

Associated with function definitions and their application, we have two familiar,
and computationally very important, processes — so important that they have their
own terminology. Using the current example, we can unfold by replacing

 ‘inc_by_2(x)’ by ‘x + 2’.

In the reverse direction, we can perform a fold by replacing

‘x + 2’ by ‘inc_by_2(x)’.

We can even replace

‘y + 2’ by ‘inc_by_2(y)’.

Why we would want to do either, or even both, of these transformations will
become clear later on in Section 1.5. Currently, it will simply prove to be a
useful mechanism to facilitate partial substitutions. But before we put them to
use, and while we are discussing functions, we explain an alternative representation
of a function. In the definition

‘inc_by_2(x) – x + 2’
we are not really defining the function

‘inc_by_2’ but the expression ‘inc_by_2(x)’. What we introduce now is a
notational device for separating ‘inc_by_2’ from the ‘(x)’ part.

First notice that the type of ‘ inc_by_2’ is — , whereas the type of
‘inc_by_2(x)’ is . Something happens to get from one to the other, and that
something is the substitution, the delivering, of an argument (of type) and the
subsequent evaluation of the expression to give a result, here again of type .
The new notation makes the substitution explicit and corresponds to the
substitution of an actual parameter for a formal parameter in the same way as
occurs in a computer implementation of a function call. The notation is called
lambda notation (¬ is the Greek lower case letter lambda) 21 and, using the same
example, is written thus:

inc_by_2 – (¬x:)(x + 2)

 - meaning “substitute a value, of type , for x in ‘x + 2’ ”

and then, following the textual substitution rules22, since

inc_by_2 ¢ (¬x:)(x + 2)

2 1 This notation may also be used to relate the formal and actual parameters of ‘macros’
— functions/operators written in a more computing-oriented fashion — about which we shall say
more, in passing, later.
2 2 Although this instance might look rather complicated, all this means is that if f ¢g is a rule, then
f(a) ¢ g(a) is also a rule. The only difference here is that one of the functions is represented by a
‘formula’ instead of a simple name.

Technical Background 57

we have
inc_by_2(z) ¢ (¬x:)(x + 2)(z).

The form of the expression ‘(¬x:)(x + 2)(z)’ will be new to most readers. It has
three components, which are referred to in the order ‘third, first, second’, and means

“substitute the value z for x in ‘x + 2’ ”, to give

‘z + 2’.

Here, z is the actual parameter, x is the formal parameter (used in the definition as
an integer place holder), and ‘x + 2’ is the body of the function/routine.

Now suppose that we have some expression that involves one or more instances of
the (free)23 variable x, and let this expression define the function f,

f(x) – _____ x _____ (an expression in x)

Then we have

_____ x _____
¢ — fold using f(x) ¢ _____ x _____

f(x)
¢ — x ¢ y

f(y)
¢ — unfold using f(y) ¢ _____ y _____

_____ y _____
 (the same expression, in terms of y)

(This is exactly the scenario which typifies the substitution of x by y in an
arbitrary well-formed expression, so our sub-expression replacements have been
justified.)

There are other notations that are used to indicate substitution. One which is
commonly encountered and which we shall find convenient to use is the following:

P(x) [x æ y] – (¬x:)(P(x))(y)
¢ P(y)

So, the result is P(x) with all (free) occurrences of x replaced by y.

2 3 Free variables are those that we may regard as already existing; bound variables are effectively
new, local, variables. Thus far we have encountered bound variables in conjunction with universal
and existential quantifiers.

58 Constructing Correct Software

Before moving on to look at rule sets for specific types of data, we extend ¬-
notation to facilitate the change of variables within rewrite rules. One rule
associated with integer addition (of type —) is

a + b ¢ b + a

We wish to be able to use this rule to manipulate integers other than a and b; they
are only to be interpreted as place holders. Hence we write

(¬a,b:) a + b ¢ b + a

i.e., for any integers a and b, a + b can be replaced by b + a.
This rule can then be instantiated24 using x and y in place of a and b to give the
rule

x + y ¢ y + x as expected.

So the ¬ construction is used to indicate the allowed substitution of values (or
names of unknown values) into expressions and rules. An extension to this
permits the substitution of types, but to indicate the difference in the ‘kind’ of
entity being manipulated, we use the syntax “(¬ ::)” as in “(¬X::Type)”. This
means that we can substitute any, non-empty, type for X in whatever follows.

The transformation rules may therefore be parameterised over types and values
(names) and may be universally applicable or conditional. These rules will be used
primarily to substitute one sub-expression for another within the current ‘working’
expression. The rules may be given, by way of the definition of the data types
used, or arise from user-defined functions and relations.

To summarise, we can can express these important generic properties associated
with functions, and two such properties can be expressed as the highly
parameterised rules

(¬X::Type,Y::Type) -- see25

(¬f :X — Y)
(¬x,y:X)

(x = y) f(x) ¢ f(y)
and

(¬X::Type,Y::Type)
(¬f,g:X — Y)

(¬x:X)
(f = g) f(x) ¢ g(x)

2 4 All this means here is that x and y are substituted for a and b, but the word instantiate is often used.
25 And these Types may be different.

Technical Background 59

The second of these reads as: “Given types X and Y, we can take functions f and g
(each of type X — Y) such that for any given value of x:X, if f = g then f(x) can
be replaced by g(x). Notice how the rule is presented in a structured fashion, each
layer adding a level of abstraction.

[In reverse,

(∀x:X)(f(x) = g(x)) f ¢ g]

The same form of rule may also be derived from certain properties which might be
possessed by relations and functions, where these properties are themselves defined
by means of universally quantified equalities. Some of these are included in the
Appendix, but here we give an illustration, based on a characterisation26 of the
property that a function is associative.

is_assoc(f) –(∀x,y,z:T) f(f(x,y),z) = f(x,f(y,z))

where f :TÙT — T for some T::Type.

Thus
(is_assoc(f))

 (¬x,y,z:T)
f(f(x,y),z) ¢ f(x,f(y,z)).

This says that if f is associative then we can use the rule f(f(x,y),z) ¢ f(x,f(y,z))
with any substitutions of type T values for the place holders x, y and z.

Similarly, if we have an infix binary operator acting on type T, then

(is_assoc())
 (¬x,y,z:T)

 (x y) z ¢ x (y z).

Of course we are interested in specifying the calculation of functions that use data
items more complicated than single integers. Actually, the theory of computable
functions tells us that there really is nothing else which can be computed — all
computations and data values can be encoded into single integers. But not all data
looks like a single integer, and we want to be able to perform calculations which
act on (uncoded) data in the form that we commonly see it.

There are basically two ways to go: we can either have more complicated data types
or we can base the specification on a more complicated Boolean expression, a more
complicated predicate, and we can utilise both these ‘extensions’ within the same
specification.

2 6 We can use the notation is_assoc(f), or a pre-fix operator is_assoc f, or even a post-fix operator,
and write f is_assoc.

60 Constructing Correct Software

1.4 Data Types

We now collect together some primitive operations on basic data types and then
take a look at how we build more complex data types. This is done in a
constructive fashion, literally building new types from existing ones. At the same
time, we say something about the manipulation rules that underpin the meanings
of the types. It turns out that these rules are sufficient to define the types (any
implementation which behaves in accordance with the given rules will be
acceptable) but remember that here we are primarily concerned with describing and
defining what is to be done, not how it is to be done.

Types, not only the data types commonly found in programming languages but
also more abstract types, comprise a set of values together with operations and
predicates which act on these values. To be able to use these (named) values,
operations and predicates, we need to know how they should be written and what
they mean.

We need to describe the kinds of values used as data and results, as well as other
types27 that may be used within the pre- and post-conditions and, since these
functions are both predicates, we obviously need to involve Booleans — regardless
of the types of values manipulated by the program. Booleans are the most
fundamental type, but we shall start by taking a quick look at the integers (which
we shall consider more extensively later).

1.4.1 A Glimpse at the Integers

Our ‘toy’ examples in the earlier part of this chapter involved integers in a very
simplistic way. The types used there were based on small finite sets and we
assumed that the operators ‘=’ and ‘–’ worked in the usual fashion (but didn’t give
results outside the prescribed types) and the inequalities ‘<’ and ‘≤’, and indeed ‘=’,
gave the expected Boolean answers. So far, so good, but we really need to pin
down exactly what is going on within a specification.

2 7 These types may never truly exist. They might be used simply to aid descriptions and not be
implemented within the final software.

Technical Background 61

Suppose that we have a specification for some function f, given by

pre-f : —
post-f : Ù — ,

where denotes the integer type and pre-f(x:) – x > 3. The ‘>’ symbol
represents an ‘operation’ or a function of type Ù — . It takes two
values, x and 3 and delivers a Boolean result. Moreover, the ‘>’ symbol is placed
between the x and the 3, and is called an infix operator28.

We represent all this information in the signature of ‘>’ which we write as

 > — .
Similarly we have:

 = —
≥ —

Shortly we shall see how the meaning, the semantics, of these operators can be
defined axiomatically by rules such as

x ≥ y ¢ x > y or x = y see29

and
x ≤ y ¢ y ≥ x

But first we consider the structure and type information associated with expressions
which we can build using these operators.

The set of (all) integers is infinite, but in any implementation, in any system, we
can only represent a finite subset of them. Both of these, contradictory, views
must be considered but can be used to advantage. The notation for the set of
integers is ‘ ’. The ‘Z’, written in what is often called “Blackboard capitals” 30,
comes from the German word ‘zahlen’, meaning number.

– {.., –2, –1, 0, 1, 2, ,...}

where the sequence of numbers extends to infinity in both direction.

2 8 Strictly ‘operators’ are defined so as to take input values — operands — and results from the same
type, but here it makes no sense to worry about such things. Of more importance is to note that
symbols such as ‘>’ denote functions, but they are so commonly used that an alternative
representation has been devised; ‘greater_than(x,3)’ is a little bit cumbersome.
2 9 Recall that t he symbol ¢ indicates that two expressions are of equal value and can be read as “is
the same as” or “can be replaced by”. The same symbol will be used to indicate (i) that expressions
are equal, by definition, and (ii) that we have deduced, or calculated, such an equality.
3 0 We shall adopt the convention of using other Blackboard capitals to denote other ‘standard’ sets
and types but not as type constructors.

62 Constructing Correct Software

Here ‘–1’ is “negative 1” (minus 1), it has nothing yet to do with subtraction, just
“counting down” from zero. The high ‘–’ symbol is used to distinguish negation (a
unary operation) from the infix binary subtraction operator.

We assume that if a calculation ever overflows, then an error occurs and no valid
answer (certainly no answer of type) is delivered. This is consistent with our
overall maxim that applying legal manipulations to a given expression should
achieve an equivalent expression. Generating an error obviously contravenes this.

We shall exploit the boundedness of implementations by arguing that, in principle,
we could write out the set display in full. This would then allow us to apply
various operations to individual integers or to pairs of them as appropriate.
Conversely, we shall eventually want to apply algebraic arguments so that we need
not in practice carry out all individual evaluations — there are simply too many.

Later we shall consider the construction of the set (and type) , but now our
concern is with structure and type information. As in programming languages, just
because an expression is well-formed and type-consistent does not guarantee that its
evaluation is always valid and would succeed. Mathematically, valid syntax and
type consistency are necessary, but they may not be sufficient. Other checks (such
as that required so as not to try to carry out division by zero) will need to be
incorporated, but these are semantic considerations. As a first move, you should
ensure that all expressions are properly structured and type-compatible. One way to
check this is to construct a tree representation of how sub-expressions are linked
and incorporate type information into this. Two possible representations of the
expression “x > 3” over are given in Figures 1.10 and 1.11.

> : Ù —

x: 3:

Figure 1.10

In Figure 1.10 the tree is simple and perhaps as expected but with type information
attached to the nodes — particularly the operator node — makes the annotation
rather complex. Placing an extra line (upwards, from the old root) and attaching
type information to the arcs rather than the nodes, we get the less cluttered
representation in Figure 1.11.

Technical Background 63

>

x 3

Figure 1.11

More complicated expressions are represented simply by plugging these trees
together. Generally brackets are not required in the trees — unless we have some
really strange syntactic constructs, and we do — but they are often needed to resolve
ambiguities within the textual versions of expressions. Of course, some ‘trees’

look a little strange (such as Figure 1.12, which corresponds to the expression –x,
the negation of x) but still carry the desired information.

We shall say little more about these tree representations, but if you ever get
confused about how to decipher an expression, they are a very good first move in
trying to resolve your problem; and if you can’t draw a corresponding tree, or if you
can draw more than one, then you need look no further for something that must be
fixed before you can go on.

x

–

Figure 1.12

64 Constructing Correct Software

Assuming familiarity with integer arithmetic and therefore skipping explanations of
the common operations and predicates (equality and the inequalities), the signatures
are as follows:

> —
≥ —

 = —
and

 < —
≤ —
≠ —

+ —
– — (the negative high ‘–’)

 – —

 * —
÷ — (where 3÷2 = 1, 2÷3 = 0, etc.)

For completeness, we also need to include (the signatures of) constants. These are
functions of zero variables. There are infinitely many of these so we could be here
for some time. In fact, as will be explained we only need one constant, 0, but
short of having infinitely many, it will also be convenient to identify 1 as a special
constant. These constants are indicated thus:

0 —
1 —

For the purpose of building expression trees, you may assume all the other integer
constants can be treated similarly. Notice also that ‘declarations’ like x :
correspond to the introduction of signatures such as

x —

(i.e., as far as we are concerned, x is an integer constant)

Technical Background 65

1.4.2 Logical Types

Having introduced some basic notation using the type , we now move to the
formal definitions of basic types and ways of constructing composite types.

1.4.2.1 The Boolean Type,

Here there are only two values: two constants, ‘True’ and ‘False’, and the basic
operators not, and, and or. As might be expected, there are special notations
associated with these operators: not is written as ⁄, and as ¯ (remembered using
¯nd), and or as ˘, and their signatures are

True —
False —
⁄ —

 ¯ —
 ̆ —

These don’t look very exciting since all input and output values are of type and
the set is only {True, False}, but the type (i.e., the set together with the
operations not, and and or) forms the basis of all logical arguments, reasoning, and
deduction.

Formal characterisations of the operators (operations) follow soon, but just to
provide a touchstone for any reader who has not met them before, we give some
informal descriptions31. The ⁄ operator simply ‘flips’ its argument, so these rules
should be valid:

⁄True ¢ False
and ⁄False ¢ True.

This can then be used to give direct definitions to ‘secondary’ operators such as

a ≠ b – ⁄(a = b)

The other two operators can be described more concisely.

a ¯ b is True if and only if both a and b are True.
a ˘ b is True if and only if either a or b (or both) are True.

Now for a proper definition of the type . It is important that the reader
understands not only the content of the section but also the framework used to
deliver the information.

3 1 In the proper definition which follows we take care to avoid circularity. For our purposes, it is
sufficient to take all our type definitions (and their rule sets) in their entirety.

66 Constructing Correct Software

Mathematically, a common starting point for the study of Boolean Algebras is the
following list of ten identities/axioms, which we now write as re-write rules.

Recall that the set is {True, False}, the operators ⁄, ¯ and ˘ are not, and and
or, respectively and the syntax and type information of the operators for is
indicated by the following signatures:

⁄ — not is a prefix operator.
¯ — and is an infix operator
˘ — or is an infix operator

(¬a,b,c:)

 1 a ˘ b ¢ b ˘ a or is commutative32

 2 a ˘ (b ˘ c) ¢ (a ˘ b) ˘ c or is associative
 3 a ˘ False ¢ a False is an identity element for or
 4 a ˘ ⁄a ¢ True

 5 a ¯ b ¢ b ¯ a and is commutative
 6 a ¯ (b ¯ c) ¢ (a ¯ b) ¯ c and is associative
 7 a ¯ True ¢ a True is an identity element for and
 8 a ¯ ⁄a ¢ False

 9 a ¯ (b ˘ c) ¢ (a ¯ b) ˘ (a ¯ c) and distributes over or
10 a ˘ (b ¯ c) ¢ (a ˘ b) ¯ (a ˘ c) or distributes over and

In much the same way that ¬ can be used to indicate the substitution of actual
parameters for formal parameters (used in the definition of a function); ¬ is used
here to indicate that the quoted names (a, b and c) are merely place holders in the
rules, and can be replaced by any required expressions of the appropriate type, here

.

3 2 All these terms relate to ways in which the expression can be manipulated. They can also be
defined as transformations on the underlying tree structure of the expression. See the appendix for
illustrations of the most common forms.

Technical Background 67

From the given set of ten rules, we can deduce many others which may prove very
useful. In particular, they can be used as ‘short cuts’ to avoid the need to repeat
lots of tedious and distracting ‘side work’. For example:

a ˘ True
¢ True is the identity element for ¯

(a ˘ True) ¯ True
¢ Property of ⁄a

(a ˘ True) ¯ (a ˘⁄a)
¢ Distributivity of ˘ over ¯, factorization

a ˘ (True ¯⁄a)
¢ True is the identity element for ¯

a ˘⁄a
¢ Property of ⁄a

True

so we have the (new) rule

a ˘ True ¢ True

Similarly, we can derive the rule

a ¯ False ¢ False

These are called the null rules since ‘˘ing’ with True nullifies the effect of a
within the expression a ˘ True, and similarly with ¯ and False in the second rule.
These are probably familiar to the reader, but they are not in the given set, and their
derivations — though easy to follow — are not particularly easy to ‘invent’. We
certainly wouldn’t like to have to spend a long time trying to re-derive them (and
probably going round in circles) in the midst of a serious piece of program
synthesis. Two other rules which are less familiar, and perhaps somewhat
‘suspicious’ are the absorption rules.

a ˘ (a ¯ b) ¢ a33

a ¯ (a ˘ b) ¢ a

Here the terms involving b are absorbed into a and effectively disappear. The
calculations are straightforward now that we have the null rules. We leave
justification of these to the reader.

3 3 Compare this with x max (x min y) or max(x, min(x, y)), where x and y are integers and max and
min compute maximum and minimum values.

68 Constructing Correct Software

But surely there is something missing! We would definitely expect that the
deMorgan rules should be included, i.e.,

⁄(a ¯ b) ¢ (⁄a) ˘ (⁄b)
and

⁄(a ˘ b) ¢ (⁄a) ¯ (⁄b)

Not only are these absent from the list but there is no direct way of obtaining
them. Searching through the rules, you will see that no rule can be
applied to ‘⁄(a ¯ b)’ which will move the ⁄ operation.

Derivation and justification of these rules requires that we use the uniqueness of
complements.

If x,y: are values or expressions which satisfy the two rules

x ¯ y ¢ False x ˘ y ¢ True

then y is called a complement of x.

Given the Boolean (variable with the) value a, suppose there are Boolean values b
and c such that the following rules hold:

a ¯ b ¢ False a ˘ b ¢ True
a ¯ c ¢ False a ˘ c ¢ True

From these assumptions, we can show (another exercise for the reader) that

b ¢ c

Therefore any two complements of a given value are equal and complements are
unique.

Since we also have

a ˘ ⁄a ¢ True and a ¯ ⁄a ¢ False

and these two rules together tell us that ⁄a is the complement of a.

It follows therefore that

b ¢⁄a

Any Boolean (variable or expression) with these properties, relative to a , is
equivalent to the complement of a. It is merely a different way of writing ⁄a.

Technical Background 69

Let’s put this result to use immediately.

Notice that
True ˘ False ¢ True

and, after some manipulation,

True ¯ False ¢ False

Hence we do have the rules
⁄True ¢ False

and
⁄False ¢ True

Similarly
 (a ¯ b) ¯ (⁄a ˘ ⁄b) ¢ False

and
 (a ¯ b) ˘ (⁄a ˘ ⁄b) ¢ True

So ⁄a ˘ ⁄b is the complement of a ¯ b
and hence

⁄(a ¯ b) ¢ (⁄a ˘ ⁄b) can be used as a rule.

Other rules, which can be derived as exercises by the reader who feels the need to
develop his manipulative skills, include

⁄(a ˘ b) ¢ (⁄a ¯ ⁄b)

(a ¯ a) ¢ a
and the idempotent laws

(a ˘ a) ¢ a

and ⁄⁄a ¢ a the involution law.

We can now collect together various parts and present a definition of the type .
It is not the smallest, most compact, definition that could be given, but it does
contain most of the commonly used Boolean rules and illustrates how we shall
define types, axiomatically, from now on. Additionally, we also include
terminology (which describe common properties of the operators) that is easier to
quote than to give in symbolic form.

70 Constructing Correct Software

Type/Class (Boolean)
values (–{True,False})
operations:

True —
False —
⁄ —

¯ —
˘ —

rules: (¬a,b,c:)
a ̆b ¢ b ̆a ˘ is commutative
a ˘ a ¢ a ˘ is idempotent

a ̆(b ̆c) ¢ (a ̆b) ̆c ˘ is associative
a ̆False ¢ a

False is an identity element for the ˘ operation
a ̆(⁄a) ¢ True ⁄a is a complement34 of a

a ˘ True ¢ True True is a null element for ˘

a ̄b ¢ b ̄a ¯ is commutative
a ¯ a ¢ a ¯ is idempotent

a ̄(b ̄c) ¢ (a ̄b) ̄c ¯ is associative
a ̄True ¢ a

True is an identity element for the ¯ operation
a ̄(⁄a) ¢ False ⁄a is a complement of a

a ¯ False ¢ False False is a null element for ¯

⁄True ¢ False
⁄False ¢ True
⁄⁄a ¢ a involution

a ̄(b ̆c) ¢ (a ̄b) ̆(a ̄c) ¯ distributes over ˘
a ̆(b ̄c) ¢ (a ̆b) ̄(a ̆c) ˘ distributes over ¯

a ˘ (a ¯ b) ¢ a absorption law
a ¯ (a ˘ b) ¢ a absorption law

⁄(a ¯ b) ¢ (⁄a ˘⁄b) deMorgan’s law
⁄(a ˘ b) ¢ (⁄a ¯ ⁄b) deMorgan’s law

3 4 Note that both the rules a ˘ (⁄a) ¢ True and a ¯ (⁄a) ¢ False are needed to fully determine
complements.

Technical Background 71

1.4.2.2 Implication and Deduction

There are other logical connectives which may be defined, but for our purposes the
following two are the most relevant.

x implies y
is written as

x fi y

and informally this can be thought of as

 “if x then y (else True) fi”.

The idea behind this operator is that we can deduce y from x; that is, we can deduce
that y is True when we know that x is True.

Also we have
x is_equivalent_to y

which is written as
x › y

meaning that
“x and y have the same (Boolean) value”.

As there are only two possible results, this can also be verbalised as “(x is True) if
and only if (y is True)”, which is often abbreviated to “x iff y”.

Of course, the signatures are

fi —
› —

These two operators relate to the notion of ‘deduction’ and are not only useful in
specification but allow us to derive other Boolean equivalences in a more
straightforward manner and play an important part when it comes to strict
refinement (i.e., reduction) as opposed to (reversible) transformations. But more on
that later.

Jumping straight in we have

a fi b – (⁄a) ˘ (a ¯ b)

The motivation behind this definition is as follows: a may be False, in which case
the implication tells us nothing about b, but if a is True we require that b also be
True. Hence we have this (non-standard) definition.

72 Constructing Correct Software

Similarly, we have

a› b – (a fi b) ¯ (b fi a)

The properties of equivalence thus follow from those of implication.

When introducing new operators or new macros, we must take care to preserve
consistency (i.e., to avoid any situation where, using rules in ways that now
become available, an expression can be evaluated in different orders to give different
values which are not intended to be equivalent). Here there should be no such
difficulties since the bridge between each new operator and old ones is achieved by a
single rule, The rules are

afib ¢ (⁄a) ˘ (a ¯ b)
and

a› b ¢ (afib) ¯ (bfia)

The reason for our non-standard definition of implication will become clear when
we extend the set of truth values. However, notice that by using existing rules we
have

afib ¢ (⁄a) ˘ (a ¯ b)
¢ ((⁄a) ˘ a) ¯ ((⁄a) ˘ b)
¢ True ¯ ((⁄a) ˘ b)
¢ (⁄a) ˘ b

This is the more commonly seen form, and we can use it in manipulations. It is
simpler (shorter) but can often cause confusion when first encountered. It is not
immediately obvious how it relates to the notion behind implication.

The implication operator has many interesting and useful properties. These can be
obtained by ‘translating’ fi into ¯, ˘ and ⁄. The most immediate are:

For all a (i.e., for an arbitrary a)
(afia) ¢ True (fi is reflexive)

and
 (afib ¯ bfic) (afic) (fi is transitive)

The implication operator, ‘fi’, can be associated with deduction sequences of the
form ‘if assumption then conclusion’. We demonstrate this by showing the
equivalence of the evaluation of the expression ‘a fi b’ to give True and the
evaluation of b under the assumption that a holds.

Technical Background 73

Following our definition of afib, we note the following argument:

if a is False (so ⁄a is True), then trivially it follows that afib,
if a is True, then all we have to do is to show that b is True.

Hence, proving that
afib ¢ True

is the same as showing that35

(a) b (¢ True)

given that a is True, it follows that b is True.

We shall use it as justification for switching between these different ways of
showing the validity of conditional claims; we can either

assume a and evaluate b
or

evaluate ‘a fi b’.

Hence our ‘formula’ for afib does fit with the idea of deducing b from a.

[Although we shall need to insist on one further technical requirement, we should
point out here that ‘fi’ is particularly important in program derivation because,
given the specification for some function f:X — Y, the necessary logical link
between its data and result values is

(∀x:X) (pre-f(x) fi (∃y:Y) (post-f(x,y))

 i.e., given a suitable x there is an appropriate y.]

The discussion above is related to what logicians call Modus Ponens, a method of
reasoning which forms the basis of many deductive arguments.

In our notation, this is something like

(a ¯ (afib)) fi b

3 5 That is (a) b ¢ True

74 Constructing Correct Software

Other ‘fi’ rules which can easily be derived, and used to simplify expression
involving ‘fi’ include

(a ¯ b) fi a
a fi (a ˘ b).

(True fi q) ¢ q
(False fi q) ¢ True
(p fi True) ¢ True

(p fi False) ¢ ⁄p

(p fi q) ¢ (⁄q fi⁄p)
p fi q) fi (p fi (q ˘ r)) (¢ True)

(p fi q) fi ((p ¯ r) fi q) (¢ True)
((p fi q) ¯ (⁄p fi⁄q)) ¢ (p › q)

Less expected are the following rules which may be regarded as absorption rules.
That is, under appropriate conditions, part of an expression ‘disappears’.

(a fi b) a ¢ a ¯ b

(a fi b) b ¢ a ˘ b

a ¯ (a fi b) ¯ b ¢ a ¯ (a fi b)

a ¯ b ¢ a ¯ (a fi b)

[So we also have
a ¯ b ¢ b ¯ (b fi a)

and hence
a ¯ (a fi b) ¢ b ¯ (b fi a) !!]

By comparison ‘›’ is more straightforward and less interesting. Its main rules are

a› a ¢ True

b› a ¢ a› b

 (a› b ¯ b› c) a› c ¢ True

So › is a value equivalence relation, just like ‘=’, and hence we can also use it as
the basis of re-write rules and replace it with ‘¢’ whenever we have a valid logical
equivalence that we wish to use as a rule:

(a › b) a ¢ b

Technical Background 75

We also have

a› b ¢ (a ¯ b) ˘ (⁄a ¯ ⁄b)

Now we can extend the definition of to include the declaration of these new
operators and derived rules. These are given in the Appendix.

1.4.2.3 Boolean Quantifiers

We have already met the existential quantifier, “there exists”, written “∃”, within
specifications. So

 (∃x:)(x + 3 = 0)

means that “there exists an integer x such that x + 3 = 0”.

This is a simple example, where the expression “x + 3 = 0” should be thought of
as a mechanism for obtaining a Boolean value from the integer x. The “(∃x:)”
then causes the expression to be evaluated for each value in and the results
combined appropriately36. The calculation of this final step requires infinitely
many values be combined, and the tree relating to this will be rather wide; however,
we can still use a more compact tree to indicate the types involved (as in Figure
1.13).

(∃x:)

3

+

x

 =

 0

Figure 1.13

When a logically quantified expression is fully evaluated, it delivers a Boolean
result. But x is not a single constant, and “x + 3 = 0” does not represent a Boolean
value, it is a function of type — .

3 6 Actually by using the ˘ connective, but more about that later.

76 Constructing Correct Software

Linking the x’s in Figure 1.13 (to give Figure 1.14) clarifies the fact that x is not
an ‘input’ value and in fact the expression “(∃x:)(x + 3 = 0)” is a Boolean
constant; it is a rather complicated way of writing “True”. x is a bound variable,
an internal variable. Think of it as a local variable. Such linking within ‘trees’ is
useful in simple cases, but it is perhaps not worthwhile taking this idea much
further.

(∃x:)

+

x

 =

 0

 3

Figure 1.14

Finally, consider
(∃x:)(x + y = 0) where y:

This gives the picture in Figure 1.15, which clearly shows that we have a function
of type — .

(∃x:)

+

x

 =

 0

y

Figure 1.15

Technical Background 77

1.4.2.4 Extended (3-valued) Logic

Apart from the Boolean type based on the set {True, False}, there are situations
where a seemingly innocuous expression gives rise to errors and hence we want, at
all costs, to prevent an attempt to complete the evaluation of certain ‘Boolean’
expressions. To avoid using a post-condition in a situation where the pre-condition
failed (i.e., gave False, indicating that the data was invalid), we used the sequential,
or conditional, and operator. This works in exactly the same way as the normal and
when used with Boolean inputs but also allowed us to have an undefined input for
the second operand provided that, when that happened, the first one was False. This
condition guaranteed that the resulting expression was ‘well-formed’ and never gave
an undefined result. We therefore have the informal definition

a b – if a then b else False fi
but the result must be of type .

Similarly, we have a conditional or,

a Ò b – if a then True else b fi
 and again the result must be of type .

Representing the extended truth set/type by – {True, False, Undefined 37}, we
have the signatures

 —
 Ò —

Of course, we are not really interested in situations where final results are Undefined
or Unknown, but we need to know what to do with them if and when they occur
within expressions. We shall try to deal with such ‘values’ in a minimal way.

Before giving the formal (but implicit) definitions of these operators, we note the
distinction between False and Undefined.

The expression 1 / 0 < 6 is Undefined – it is neither True nor False,

whereas 1 < 6 * 0 is False – it reduces to 1 < 0.

To prevent unnecessary operand evaluation and restrict the range of valid results
from evaluating these operations, we require that and Ò satisfy the following
rules. As will be seen, these are consistent with similar operations over .

3 7 This value can also be regarded as ‘Unknown’ or ‘Error’ – which is distinct from either True or
False. It is not the same as saying that the value is either True or False but we don’t know which one.
It is sometimes more natural to use one of these names rather than ‘Undefined’.

78 Constructing Correct Software

The rules are: True b ¢ b with b:
False b ¢ False

and
True Ò b ¢ True

False Ò b ¢ b with b:

and, for completeness38,

Undefined b ¢ Undefined
True Undefined ¢ Undefined

and
Undefined Ò b ¢ Undefined

False Ò Undefined ¢ Undefined

Of course, since is an extension of (this follows because · and the
results coincide when common values are used as operands), the Boolean operators
are also available on the appropriate values in (i.e., on True and False).

So, if a,b: , then

a b ¢ a ¯ b
and

a Ò b ¢ a ˘ b

It also follows that
⁄(a b) ¢ (⁄a Ò ⁄b)

and
⁄(a Ò b) ¢ (⁄a ⁄b).

These are the variants of deMorgan’s laws. Here ⁄Undefined is not defined.
Remember, consequential parts of the expressions are only evaluated when
necessary; and ‘⁄’ is defined only over .

So, in certain circumstances we can replace by ¯, and Ò by ˘, and ⁄ reacts in
the expected way with and Ò.

The situation becomes less clear when both conditional and ‘normal’ connectives
are used together (and where we allow the possibility of unknown values and hence
we cannot simply replace the conditional operators with the Boolean versions).
3 8 These rules are not those to be found elsewhere. They are included only for completeness, and
we shall not have cause to use them. To omit them might only have led the reader to ask “but what
if...?” Indeed, for them to be valid we would have to extend the operator signatures to: —
and Ò — . To do this would admit expressions which we regard as ill-formed.

Note also that Undefined = Undefined ¢ Undefined (the right-hand side is Undefined, not True)

Technical Background 79

Although the and Ò connectives will be new to most readers, we shall not
digress into an extensive development of the associated algebra but merely quote
some results, work out some others directly from the definitions, and derive only a
few by algebraic manipulation.

For example, we have

x (y a) ¢ (x y) a where x: , y,a:
x (y a) ¢ (x ¯ y) a where x,y: , a:
x ¯ (y a) ¢ (x ¯ y) a where x,y: , a:

p (x ˘ y) ¢ (p x) ˘ (p y) where p: , x,y:

(p ˘ q) a ¢ (p a) ˘ (q a) where p,q: , a:

Less obvious, and utilising normal Boolean algebra in their derivation, are:

(p a) ˘ (⁄p q a) where p,q: , a:
¢

(p a) ˘ ((⁄p ¯ q) a)
¢

(p ˘ (⁄p ¯ q)) a
¢

((p ˘ ⁄p) ¯ (p ˘ q)) a
¢

(True ¯ (p ˘ q)) a
¢

(p ˘ q) a

There are more useful identities involving these conditional operators. These
include

(p a) ¯ (q b) ¢ (p ¯ q) (a ¯ b)

a special case of which is

(p a) ¯ (⁄p b) ¢ False

We also have
(p a) ˘ (q b) fi (p ˘ q) (a ˘ b)

(p Ò a) ˘ (q Ò b) ¢ (p ˘ q) Ò (a ˘ b)

(p ¯ q) Ò (a ¯ b) fi (p Ò a) ¯ (q Ò b)

80 Constructing Correct Software

a ¯ (b c) ¢ (a ¯ b) c
and hence

a ¯ (a c) ¢ a c

The forms above relate specifically to conditional expressions (as in programs) and
subsequently to conditional statements. Hence, instead of just noting them, we
look at their derivation. First we examine

(p a) ¯ (q b) ¢ (p ¯ q) (a ¯ b).

If (p ¯ q) ¢ True, then p ¢ True and q ¢ True, so

(p ¯ q) (a ¯ b) ¢ (a ¯ b)
and

(p a) ¯ (q b) ¢ (a ¯ b).

On the other hand, if either p ¢ False or q ¢ False, then

(p a) ¢ False or (q b) ¢ False, so

(p a) ¯ (q b) ¢ False.

Similarly,
(p ¯ q) ¢ False

so
(p ¯ q) (a ¯ b) ¢ False

¢ (p a) ¯ (q b),
and so the rule holds.

For the implication

(p a) ˘ (q b) fi (p ˘ q) (a ˘ b),

we assume the truth of the left-hand side and evaluate the right-hand side.

If (p a) ˘ (q b) ¢ True, then without loss of generality we can suppose
that (p a) ¢ True (i.e., p ¢ True and a ¢ True) so

 (p ˘ q) (a ˘ b)
¢ True True
¢ True

Hence the implication holds.

Technical Background 81

Once we have these two rules, the others follow by the straightforward algebraic
manipulation. We just do one further derivation:

(p Ò a) ˘ (q Ò b)
¢

⁄⁄((p Ò a) ˘ (q Ò b))
¢

⁄(⁄(p Ò a) ¯ ⁄(q Ò b))
¢

⁄((⁄p ⁄a) ¯ (⁄q ⁄b))
¢

⁄((⁄p ¯ ⁄a) (⁄q ¯ ⁄b)) by the first of these new rules.
¢

⁄(⁄p ¯ ⁄a) Ò ⁄(⁄q ¯ ⁄b)
¢

(⁄⁄p ˘⁄⁄a) Ò (⁄⁄q ˘⁄⁄b)
¢

(p ˘ a) Ò (q ˘ b)

It is also convenient, when defining conditional programming statements to have a
version of implication in which evaluation is ‘lazy’ and which thus prevents us
from attempting to evaluate sections of expressions or commands that are, at best
not required and at worst would give rise to needless errors. Thus we have the
conditional/sequential/lazy implication operator ‘¿’, defined as

a ¿ b – (⁄a) ˘ (a b).

Note that in many situations where ‘fi’ would commonly be used, and hence give
rise to failures in evaluation, the lazy version should be used.

The signature of lazy implication is ¿ — .

As with the simple, Boolean, case, there is a simpler equivalent. This is
predictably

⁄a Ò b

That both expressions are value equivalent can be seen by considering the two
values which a might have. If a is True, then both expressions evaluate to b. If a
is False, then we have the result True for both expressions.

It also follows that
(a ¿ b) ¯ (b ¿ a) ¢ (a › b)

and
((a ¿ b) ¯ (b ¿ c)) fi (a ¿ c)

82 Constructing Correct Software

Conditional Expressions

Having used a set of rules (axioms) to define and Ò, rather than a formula in
which we might well have been tempted to use an “if .. then...” construct, we can
now use these operators to give a proper definition to “if...then...” and thus avoid
circular definitions:

if a then b else c fi – (a ¿ b) ¯ (⁄a ¿ c)

To be of use within transformation sequences, conditional expressions must be
well-formed. By this we mean that it must give a Boolean result. Its signature is:

if then else fi — .

In practice, this means that if the first operand (the test) gives True, then the
second operand (the ‘then’ value) must be Boolean; and if the test yields False, then
the ‘else’ operand must be Boolean.

We have a definition of ‘¿ ’ but no manipulation rules. Note the following
derivation:

(a ¿ b) ¯ (⁄a ¿ c)
¢

((⁄a) ˘ (a b)) ¯ ((a) ˘ (⁄a c))
¢

(⁄a ¯ a)
˘ (⁄a ¯ (⁄a c))
˘ (a ¯ (a b))
˘ ((a b) ¯ (⁄a c))

¢
False

˘ (⁄a c)
˘ (a b)
˘ False

¢
(a b) ˘ (⁄a c)

So we have

if a then b else c fi ¢ (a b) ˘ (⁄a c)

We can now utilise some of the rules for conditional operators to derive rules for
manipulating “if...then...else...fi” expressions.

Technical Background 83

The first is trivial:

if a then b else c fi ¢ (a b) ˘ (⁄a c)
¢ (⁄a c) ˘ (⁄⁄a b)
¢ if ⁄a then c else b fi

Next, with p: , a1,a2,b1,b2: , provided that the following expressions are well-

formed
(if p then a1 else b1 fi) ¯ (if p then a2 else b2 fi)

 ¢
if p then (a1 ¯ a2) else (b1 ¯ b2) fi

This is derived by straightforward calculation:

(if p then a1 else b1 fi) ¯ (if p then a2 else b2 fi)

¢
((p a1) ˘ (⁄p b1)) ¯ ((p a2) ˘ (⁄p b2))

¢
 ((p a1) ¯ (p a2))

˘ ((p a1) ¯ (⁄p b2))

˘ ((⁄p b1) ¯ (p a2))

˘ ((⁄p b1) ¯ (⁄p b2))

¢
 ((p ¯ p) (a1 ¯ a2))

˘ ((p ¯ ⁄p) (a1 ¯ b2))

˘ ((⁄p ¯ p) (b1 ¯ a2))

˘ ((⁄p ¯ ⁄p) (b1 ¯ b2))

¢
 (p (a1 ¯ a2))

˘ (False (a1 ¯ b2))

˘ (False (b1 ¯ a2))

˘ (⁄p (b1 ¯ b2))

¢
 (p (a1 ¯ a2)) ˘ (⁄p (b1 ¯ b2))

¢
if p then (a1 ¯ a2) else (b1 ¯ b2) fi

84 Constructing Correct Software

Similarly, we have

if p then (if p then a else b fi) else c fi
¢

if p then a else c fi

This follows since

if p then (if p then a else b fi) else c fi
¢

(p ((p a) ˘ (⁄p b))) ˘ (⁄p c)
¢

(p p a) ˘ (p ⁄p b) ˘ (⁄p c)
¢

(p a) ˘ (False b) ˘ (⁄p c)
¢

(p a) ˘ (⁄p c)
¢

if p then a else c fi

and
if p then a else (if q then a else b fi) fi

¢
if (p ˘ q) then a else b fi

By calculation

if p then a else (if q then a else b fi) fi
¢

(p a) ˘ (⁄p ((q a) ˘ (⁄q b)))
¢

(p a) ˘ (⁄p q a) ˘ (⁄p ⁄q b)
¢

(p a) ˘ ((⁄p ¯ q) a) ˘ ((⁄p ¯ ⁄q) b)
¢

((p ˘ (⁄p ¯ q)) a) ˘ (⁄(p ˘ q) b)
¢

(((p ˘ ⁄p) ¯ (p ˘ q)) a) ˘ (⁄(p ˘ q) b)
¢

((True ¯ (p ˘ q)) a) ˘ (⁄(p ˘ q) b)
¢

((p ˘ q) a) ˘ (⁄(p ˘ q) b)
¢

if (p ˘ q) then a else b fi

Technical Background 85

Recall also that

(p a) ˘ (q a) ¢ (p ˘ q) a
so

(p a) ˘ (⁄p a) ¢ (p ˘ ⁄p) a
¢ True a
¢ a

That is,
if p then a else a fi ¢ a. as should be expected.

Of course, in many cases the whole point of using a conditional expression is to
prevent the (illegal?)39 evaluation of certain sub-expressions.

Also notice that, again with a,b: ,

 if a then b else True fi
¢ (a ¿ b) ¯ (⁄a ¿ True)
¢ (a ¿ b) ¯ (a Ò True)
¢ (a ¿ b) ¯ (a ˘ True)
¢ (a ¿ b) ¯ True
¢ (a ¿ b)

This piece of calculation goes some way to justify the often mistrusted definition
of the ‘incomplete’ conditional, which, in any case only makes sense with logical
operands:

if a then b fi – if a then b else True fi

Embedded Conditional Expressions

Despite our insistence that the type of the ‘if’ operand of the ‘if ... then ... else ...
fi’ construct should be Boolean, there are cases when allowing it to be ‘undefined’
does makes sense 40. In these situations, the surrounding logical context only
allows access to this operand when it is guaranteed to evaluate to True or to False.

So, consider the following expressions in which p: , q: and b,c: .

3 9 Uses of “(...?)”, such as here, indicate possible alternative terminology, or interpretations or views
— probably thought provoking.
4 0 Without extra qualifications (such as context information - see below) a conditional ‘predicated’
on ‘undefined’ cannot be evaluated.

86 Constructing Correct Software

Notwithstanding the questionable type of q, notice the following two derivations:

Let X – (⁄p Ò ⁄q) (p b).

If p ¢ True and q ¢ True, then X ¢ False. If p ¢ True and q ¢ False
then X ¢ b. And if p ¢ False, then X ¢ False.

Similarly, let Y – p ⁄q b.

If p ¢ True and q ¢ True, then Y ¢ False. If p ¢ True and q ¢ False
then Y ¢ b. And if p ¢ False, then Y ¢ False.

So we have the rule (⁄p Ò ⁄q) (p b) ¢ p ⁄q b.

By a similar argument, we can also derive the rule

(⁄p Ò ⁄q) (⁄p c) ¢ (⁄p c).

We now use these rules in a straightforward calculation:

if p q then a
else if p then b else c fi

fi

¢ ((p q) a) ˘
(⁄(p q) ((p b) ˘ (⁄p c)))

¢ (p q a) ˘
((⁄p Ò ⁄q) ((p b) ˘ (⁄p c)))

¢ (p q a) ˘
((⁄p Ò ⁄q) (p b)) ˘
((⁄p Ò ⁄q) (⁄p c))

¢ (p q a) ˘
((p ⁄q b)) ˘ (⁄p c))

¢ ((p q a) ˘ (p ⁄q b)) ˘ (⁄p c)

¢ (p ((q a) ˘ (⁄q b))) ˘ (⁄p c)

¢ if p then if q then a else b fi
else c

fi

Technical Background 87

So
if p q then a

else if p then b else c fi
fi

¢
if p then if q then a else b fi

else c
fi

In both these expressions, the evaluation of q follows an evaluation of p that
results in True (either by the ‘sequential and’ or by the hierarchical structure
imposed by the nested conditional expressions). Hence, when p ¢ False, q can be
undefined (i.e., q is allowed to be of type , it is not confined to). Therefore,
the signature for conditional expressions can be extended, in certain circumstances,
to

if then else fi — .

The situations when this type ‘extension’ is acceptable are characterised by a
predicate p so that the conditional

if q then a else b fi

can only be evaluated if

(p › True) ¿ q: . (q is of type , see Section 1.4.8
on unions below)

Here p is the context (the assumption, which is known to be True) when q is
evaluated.

An outer condition, c, may be implicit but can be carried forward into the current
calculation (and made explicit) by use of the rules

(c) c ¯ b ¢ b b:
(c) c p ¢ p p:

[Moreover, when we have complex conditions that involve a sequence of
conjuncts, such as

(a b) x ¢ y

we represent this in abbreviated form as:

(a , b) x ¢ y
]

88 Constructing Correct Software

The sequential implication operator now gives us another way to express the
relationship between pre- and post-conditions. Recall that the purpose of the pre-
condition is to identify those input values for which it is possible (and for which
we wish) to compute the specified function. It is therefore tempting to write

pre-f(x) fi (∃y:Y)(post-f(x,y))

That is, if x satisfies the pre-condition then there is some value y — and there may
be more than one value — such that ”x,y’ satisfies the post-condition.

This seems reasonable, but in the definition of ‘fi’ the two operands are expanded
independently. Therefore, the evaluation of (∃y:Y)(post-f(x,y)) is unrelated
to pre-f(x) and hence might require us to evaluate post-f(x,y) for a value of x for
which post-f(x,y) is False, and this violates the whole purpose of having a pre-
condition. To circumvent this logical problem, we bridge the two sides of the
implication by using

pre-f(x) ¿ (∃y:Y)(post-f(x,y))

Henceforth, in the synthesis of (implementations of) f, we shall assume the
existence of x and y and manipulate post-f(x,y) under the presumption that its
value (and that of pre-f(x)) is True. Remember that post-f(x,y) is an implicit
definition of y in terms of x.

Conditional Expressions with Arbitrary Types

Providing that the conditional expressions are well-formed, we can extend the
signature of the conditional expression from

if then else fi —
to

if then X else X fi — X with X ≠ .

We do this by using the existence of ‘=’ on the type X:

a = (if p then b else c fi) – if p then (a = b) else (a = c) fi.

From the right-hand side, which uses the signature ‘if then else fi — ’,
it follows that if p is True then the value of the right-hand side is a = b. Then, on
the left-hand side we also have a = b, so the value of (if p then b else c fi) is b.

Technical Background 89

Similarly, if p is False, we find that a = c and so (if p then b else c fi) evaluates to
c, so:

if True then b else c fi ¢ b
if False then b else c fi ¢ c

 (p) a = (if p then b else c fi) ¢ a = b
 (⁄p) a = (if p then b else c fi) ¢ a = c

By a similar argument, we can mix conditionals with a function application, so if
f:X — Y, we have

f(if p then b else c fi) ¢ if p then f(b) else f(c) fi

and the functions may be predicates (e.g., f :X — where f(y) – a = y) and again
we have

a = (if p then b else c fi) ¢ if p then (a = b) else (a = c) fi

which generalises to any predicate. Any parameter of a function can be
conditional, and this justifies the use of conditional terms within an expression.
So, for instance if a, c and d: and b: , we can have

a + (if b then c else d fi) ¢ if b then (a + c) else (a + d) fi

This follows from the definition of add(x,y) – x + y by the progression

a + (if b then c else d fi) ¢ add(a, if b then c else d fi)
¢ if b then add(a,c) else add(a,d) fi
¢ if b then (a + c) else (a + d) fi

Finally, notice that for x:X

True
¢ if b then True else True fi
¢ if b then x = x else x = x fi
¢ x = (if b then x else x fi)

Therefore, x = (if b then x else x fi) holds and thus x ¢ (if b then x else x fi) is a
universal rule.

So, we get the expected rules for conditional expressions, but now they have been
explained and have a formal foundation; they have not just been plucked out of thin
air. The rules discussed here are collected together in the Appendix.

90 Constructing Correct Software

Take particular notice how this major piece of syntax41 can be overloaded by
virtually any type and hence not only the rules but almost the entire data type
specification is parameterised. As always, we need to know exactly the type of
data being manipulated. [The conditional operators are included for completeness
and used to define the “if then else fi” forms. Elsewhere they can be used to
indicate sequential actions within the specification of more complex software.]

1.4.3 Sets

Although not having as high a profile as in some other areas of mathematics, sets
are the fundamental entities from which relations and functions are constructed. In
program specification and design, sets are mainly used to describe internal links
between more concrete objects.

We assume that the reader is familiar with sets — this section merely to introduces
the rules for formal manipulation of expressions involving sets — but we include a
simple example as a reminder.

Suppose W – {1, 2, 3, 4, 5, 6}
and

A – { 2, 3}
B – {1, 2, 3, 4}
C – {2, 4, 5}

Clearly
A · W, B · W and C · W — A,B,C are subsets of W,

and
2 ˜ A whereas 4 μ A.

Moreover,

B Ë C ¢ the set of all elements in B or C (or both)
¢ {1, 2, 3, 4, 5}

B fl C ¢ the set of all elements both in B and C
¢ {2,4}

B \ C ¢ the set of all elements in B but not in C (the set ‘B without C’)
¢ {1, 3}

A · B ¢ True whereas C · B ¢ False
and

#A ¢ 2 and #B ¢ 4.
❑

4 1 The ‘if ... then ... else ... fi’ construct.

Technical Background 91

In a general setting, recall that for some arbitrary type, X , (X) is the set of all
subsets of X (including Ø, the empty set, and the set X itself) and is the Powerset
of X. Most of the common set operations on (X) are directly related to Boolean
operations, and their properties (rules) follow from that correspondence.

From the seemingly non-sensical equivalence

A ¢ { x:X | x ˜ A }
(i.e., A is the set (the subset of X) which includes all the elements in A) we can
define

A fl B – { x:X | (x ˜ A) ¯ (x ˜ B) }. intersection

But
A fl B ¢ { x:X | x ˜ (A fl B) }

so
x ˜ (A fl B) ¢ (x ˜ A) ¯ (x ˜ B).

Similarly,
x ˜ (A Ë B) ¢ (x ˜ A) ˘ (x ˜ B) union

and
x ˜ (A \ B) ¢ (x ˜ A) ¯ (x μ B). difference

Then, for example,
x ˜ A fl (B Ë C)

¢
(x ˜ A) ¯ x ˜ (B Ë C)

¢
(x ˜ A) ¯ ((x ˜ B) ˘ (x ˜ C))

¢ distributivity
((x ˜ A) ¯ (x ˜ B)) ˘ ((x ˜ A) ¯ (x ˜ C))

¢
(x ˜ (A fl B)) ˘ (x ˜ (A fl C))

¢
x ˜ ((A fl B) Ë (A fl C))

So
A fl (B Ë C)

¢
{ x:X | x ˜ A fl (B Ë C) }

¢ ---- see42

{ x:X | x ˜ ((A fl B)) Ë (A fl C)) }
¢

((A fl B)) Ë (A fl C))
4 2 ‘x ˜ A fl (B Ë C)’ is a sub-expression of ‘{ x:X | x ˜ A fl (B Ë C) }’ and normal substitution
rules apply.

92 Constructing Correct Software

Of course,
 Ø – { x:X | x ˜ Ø}

¢ { x:X | False}
and

X – { x:X | x ˜ X}
¢ { x:X | True} — since x:X fi x ˜ X

and, using set difference instead of complementation, we have

x ˜ (X \ (A fl B))
¢

(x ˜ X) ¯ ⁄(x ˜ (A fl B))
¢

(x ˜ X) ¯ ⁄(x ˜ A ¯ x ˜ B)
¢

(x ˜ X) ¯ (x μ A ˘ x μ B)
¢

(x ˜ X ¯ x μ A) ˘ (x ˜ X ¯ x μ B)
so

X \ (A fl B) ¢ (X \ A) Ë (X \ B)
the set version of one of deMorgan’s laws.

For a given set X, all sets within (X) are bounded, by X, and to be useful in
computations, we also need them to be finite. Even when X is infinite (or even
uncountable), we can pick out finite subsets. They even have a special notation,

(X), and for any element, Y , of (X), we can find #Y , the size of Y (the
number of elements in Y). The other operations on (X) are derived from those
on (X).

Notice that ‘,’ is used as shorthand within set displays so that {x,y} represents the
result of {x} Ë {y} when x ≠ y, and {x, x} is usually written as {x}. Duplicates
have no significance, and (via the rule A fl (X \ A) ¢ Ø) no element of X can be
both included in, and excluded from, A when A: (X).

The Boolean combinators can be used to build new sets from existing ones, but we
also need a way of building sets from scratch. As is typical in many situations, we
can start with the simplest objects imaginable and build up from there. In the case
of sets, we have the empty set, Ø, and singletons {x} for each element x of type X.

Technical Background 93

We can illustrate this directly by relating it to the containment operator ‘˜’:

x ˜ Ø ¢ False
x ˜ {y} ¢ x = y

x ˜ (A Ë B) ¢ x ˜ A ˘ x ˜ B

The size (#) of finite subsets of X (sets of type (X)) is also found inductively by
addition of positive integers, and we have

#Ø ¢ 0
#{x} ¢ 1

#D + #E ¢ #(D Ë E) + #(D fl E)

We can also use Boolean algebra to derive the operators that relate pairs of set.
Given A,B: (X),

A · B – (∀x:X)((x ˜ A) fi (x ˜ B)) ‘A is a subset of B’

therefore, we have the rule

(¬x:X)
(x ˜ A) fi (x ˜ B)

and the other subset rules follow accordingly. Strict (as in ‘<’) subset and equality
between sets are defined in predictable ways:

A = B – A · B ¯ B · A

A ≠ B – ⁄(A = B)

A ª B – A · B ¯ A ≠ B

An extensive collection of rules for set manipulation is to be found in the
Appendix.

Readers familiar with sets might be surprised that we have not mentioned the
complementation operator, often written as A'. Well, unless we are extremely
careful with types, set complements are not always well-defined. If in doubt about
any construction or operation, then perhaps it is best avoided if at all possible.

Given A: (X) it would seem obvious to define its complement by

A ' – X \ A

But now suppose that we also have X ª Y (i.e., X is a proper subtype of Y).
Then Y \ X ≠ Ø so (∃z:Y)(z ˜ (Y \ X)).

Pictorially, we have the situation in Figure 1.16.

94 Constructing Correct Software

Y
X

A
z.

Figure 1.16

The problem is that A can be thought of as being of type (X) or of type (Y)
and, as can be seen from the diagram, we will get different results depending on
from which set (X or Y) we ‘subtract’ A. We can actually prove this.

Notice that
A · X

¢
(Y \ X) · (Y \ A)

and
z ˜ (Y \ X) so z ˜ (Y \ A).

On the other hand,

(X \ A) · X
¢

(Y \ X) · (Y \ (X \ A))
So

z ˜ (Y \ X) fi z ˜ (Y \ (X \ A))
fi (z ˜ Y) ¯ (z μ (X \ A))
fi z μ (X \ A)

Therefore, (Y \ A) ≠ (X \ A), and it is safer to use explicit set differences such as
X \ A rather than A', which is ill-defined unless we insist on strict typing so that
even when A: (X) and X· Y, A was not of type (Y) even though A · Y !!
This would be harsh. If we really want to create a set (with the same ‘value’ as A
but having type (Y)), this can be achieved by using (Y) as type the transfer
function, also called a cast, but care must be taken in converting rules from a
subtype (X) to the super-type (Y). More about this later.

Technical Background 95

[In these situations, mathematicians introduce a so-called ‘universe of discourse’
— a problem-dependent superset that contains everything relevant to the given
problem, typically written — and then take all complements relative to .
(i.e., \ X). For us to do this would undermine the whole purpose of introducing
types.]

1.4.4 Integers

We have already met the set on which the integer type is based,

– {.., -2, -1, 0, 1, 2, ,...}

But this is not just a set of (names of) unrelated values; they have meanings that
are inductively derived from operations which are defined on the set itself. This is
important. It explains why we did not even try to introduce more constants and
shows how a mathematical structure can be defined by the use of axioms (properties
that we require should hold) and conventions (which allow the introduction of more
manageable shorthand). is a structured type, and other types can be constructed
in a similar (but much more direct) fashion.

In our earlier glimpse at the integers, we only bothered with the distinct constants 0
and 1 (see 43), so 0: and 1: . Here we quickly outline how can be constructed,
from sets! The idea is that we start with the empty set and a procedure for
constructing, from any given set44, another which has ‘one more element’.

Suppose we have the function next:X Ÿ X Ë {X}. Here X represents the input
value, not the type. (Don’t even try to devise a suitable type.) Now, starting with
Ø, we can in principle compute the sequence

 Ø, next(Ø), next(next(Ø)), next(next(next(Ø))), next(next(next(next(Ø)))), etc.

This goes on for ever. Each term is a set; the first few are

 Ø,
 Ø Ë {Ø} (¢ {Ø}),
 {Ø} Ë {{Ø}},
 {Ø} Ë {{Ø}} Ë {{{Ø}}}, etc.

4 3 Indeed, after reading the next couple of pages, you should conclude that we only really need zero.
The relevance of 1, or any other integer distinct from 0, will become clear later.
4 4 A ‘proper’ set, which does not contain itself. Such constructs lead to circular reasoning and some
logical paradoxes.

96 Constructing Correct Software

This progression can be used to define the set of positive numbers which can be
used for counting 45. We shall not follow the (pure) mathematical tradition of
actually using numbers for the names of these sets but link them together by
means of the ‘size of’ operator ‘#’.

So
0 – #(Ø),
1 – #({Ø}),
2 – #({Ø} Ë {{Ø}}),
3 – #({Ø} Ë {{Ø}} Ë {{{Ø}}}), etc.

Now, for any number n, we can define n + 1 (the result of adding one and the name
of the next number in the sequence. Hence we can ‘+ 1’, and adding 2 is achieved
by adding one twice. It is tedious, but it all works and provides an inductive
construction of , which, in more familiar (but questionable) notation, is

– {n: | n = 0 ˘ n = m + 1 where m: }

so is the set of positive integers and is the infinite set which starts

{0, 1, 2, 3, 4, 5, 6, }

We (or the mathematicians) can work out the following properties of addition on
:

x + 0 ¢ x
x + y ¢ y + x (and therefore 0 + x ¢ x)

(x + y) + z ¢ x + (y + z)

Similarly, for use in counting, we have the set of natural (i.e. counting)
numbers.

– {n: | n = 1 ˘ n = m + 1 where m: }
and so

¢ {1, 2, 3, 4, 5, 6, }

We shall refer to these types only when necessary. Most of their operations are
‘cut down’ versions of the corresponding operations on .

Now for addition on the type , so far we only have ‘half’ of , there are as yet no
negative numbers.

4 5 You might think that counting is trivial and of no relevance to programming (certainly not to ‘non-
mathematical’ programs). Although we shall not go into any of the theory, all programs are
mathematical in some sense, and counting is essentially the same as computing. To be able to
compute a function requires that a related set of values be countable — so hang on in there.

Technical Background 97

For a given integer x, we want there to be another, y, such that when they are added
together they give 0.

So, given x: , we require that there exists y: such that the rule x + y ¢ 0 holds.

For a given value of x, the corresponding value y is unique 46 and is usually written

as –x, and is called the additive inverse of x. The correspondence x Ÿ –x
therefore defines a function, and we may regard it as a monadic operation.

So – — is the signature of the negate operation and it is defined by the
single axiom (rule)

x + –x ¢ 0 (and it then follows that –x + x ¢ 0)

By definition
–x + –(–x) ¢ 0 since –(–x) is an additive inverse of –x

and
–x + x ¢ 0 since x is also an additive inverse of –x

So, both –(–x) and x are additive inverses of –x and hence are equal,
i.e.,

–(–x) ¢ x

We can now define subtraction, with syntax and type information given by
 – —

and the evaluation defined by

x – y – x + (–y)

Next, multiplication. This has the signature * — , and its evaluation is
related to addition by the rules

a * 1 ¢ a
a * (b + c) ¢ (a * b) + (a * c)

Note the shape of this implicit definition. We have a base case that gives a result
directly, and an ‘extender’ which, when used ‘backwards’, reduces multiplication
by larger values to the summation of smaller products. So, for example,

x * 7 ¢ (x * 3) + (x * 4)

but then integer multiplication is really only shorthand for repeated addition.

4 6 The reasoning is similar to that concerning the uniqueness of complements in Boolean algebra.

98 Constructing Correct Software

From the basic definitions other properties can be deduced. We shall not give their
full construction; they provide interesting and challenging exercises.

However, notice that multiplication is commutative (i.e., a*b ¢ b*a) as illustrated
below.

2 * 3 ¢ 2 * (1 + 1 + 1)
¢ (2 * 1) + (2 * 1) + (2 * 1)
¢ 2 + 2 + 2
¢ (1 + 1) + (1 + 1) + (1 + 1)
¢ (1 + 1 + 1) + (1 + 1 + 1)
¢ 3 + 3
¢ (3 * 1) + (3 * 1)
¢ 3 * (1 + 1)
¢ 3 * 2

So the commutativity of * comes from the associativity of +.

1.4.4.1 Inequalities
In much the same way that addition gave rise to negation and (subsequently)
subtraction and multiplication, we can build the inequality tests (predicates) from
subtraction and the positive integers .

First notice that for any x: , exactly one of the following is True x˜ \{0}, x = 0,

or -x˜ \{0}. Note that we take 0 to be included in . So, for example, if y:

and yμ , then –y˜ \{0}. Moreover, using the notation of inequalities,
0 ≤ x – x ˜

and 0 < x – x ˜ and ¢ \{0}

Further, is closed under + and *; i.e.,

x ˜ ¯ y ˜ fi (x + y) ˜ ¯ (x*y) ˜

This can also be expressed in a more familiar fashion as conditional rules:

(0 ≤ x ¯ 0 ≤ y) 0 ≤ (x + y)
(0 ≤ x ¯ 0 ≤ y) 0 ≤ (x*y)

Technical Background 99

The bridge between the subtraction operation and the ‘≤’ predicate is immediate:

a ≤ b – 0 ≤ (b – a)

whence we have

a = b – (a ≤ b) ¯ (b ≤ a),
a ≠ b –⁄(a = b),
a < b – (a ≤ b) ¯ (a ≠ b),
a ≥ b – b ≤ a

and
a > b – b < a

From these definitions and basic properties, we can deduce more common
manipulation rules for inequalities.

Example 1.1
For a,b,c:

a ≤ b ¯ b ≤ c fi a ≤ c

Suppose that a ≤ b ¯ b ≤ c and then consider a ≤ c.
First notice that i f a ≤ b, then 0 ≤ (b – a) and if we let x = (b – a), then 0 ≤ x.
Similarly. let y = (c – b), and since b ≤ c we have that 0 ≤ y and hence that
0 ≤ x + y;

or, by a more formal calculation,

a ≤ c
¢

0 ≤ c – a
¢

0 ≤ c + (b + –b) – a
¢

0 ≤ c + (–b + b) – a
¢

0 ≤ (c + –b) + (b – a)
¢

0 ≤ (c – b) + (b – a)
¢

0 ≤ y + x
¢

True
That is,

a ≤ b ¯ b ≤ c fi a ≤ c
❑

100 Constructing Correct Software

For completeness, we can now include a definition of integer division:

⁄(b = 0) ((a ÷ b) = c – (∃d:)(a = (b * c) + d
¯ ((0 ≤ d ¯ d < b)

˘(b < d ¯ d ≤ 0)))

Here d is the remainder. The formula is so complicated because it has to cope with
both positive and negative values of a and b. Notice that b cannot be zero.

The reader is again referred to the appendix for an extensive set of rules for
operations and predicates associated with (and the subtypes and).

1.4.5 Bags

From finite sets, we move on to another structure in which (finitely many) repeats
are allowed. These are bags, or multi-sets, and the set of all bags constructible
from a given base type X is denoted by (X). Like finite subsets, bags are also
finite, but they can contain duplicate elements and use a different kind of syntax;
bag brackets are written Ê Á. With sets the essential question is, “given a set S and
an ‘element’ x, is x in S?” With a bag B, the question is “how many xs are there in
B?”.

So, if X – Ê a, b, c, d Á, then

Êa, a, a, b, a, b, a, c, a, c, c, c, aÁ ˜ (X)
and Êb, a, a, a, a, a, a, c, c, c, cÁ ˜ (X).

The bag operations are generalised from the corresponding set operations, the bag
union operation adds 47 the number of instances of each element, and the bag
intersection is associated with the least number of occurrences of each element in
the given bags. Again, examples illustrate this:

 Êa, a, a, b, b, c, c, c, cÁÈÊa, b, c, cÁ
¢ Êa, a, a, a, b, b, b, c, c, c, c, c, cÁ

and
Êa, a, a, b, b, c, c, c, cÁ fl Êa, b, c, c, c, c, c, cÁ

¢ Êa, b, c, c, c, cÁ

4 7 Since this is not consistent with the set operation, there is a variation in notation.

Technical Background 101

One bag is a sub-bag of another if it contains no more instances of any element, so

Êa, a, b, b, c, cÁ · Êa, a, a, b, b, c, c, c, cÁ.

As with sets and lists, we use # as a ‘size of’ operator; but here there is also an
infix version. As a prefix operator, it delivers the size of (i.e., number of elements
in) the bag. As an infix operator, it is used to indicate the number of instances of a
particular element within the bag, so

#Êa, a, a, b, b, c, c, c, cÁ ¢ 9
a#Êa, a, a, b, b, c, c, c, cÁ ¢ 3
b#Êa, a, a, b, b, c, c, c, cÁ ¢ 2
c#Êa, a, a, b, b, c, c, c, cÁ ¢ 4
d#Êa, a, a, b, b, c, c, c, cÁ ¢ 0

The type and syntax information associated with the common bag operations is
presented in the usual fashion:

(¬X::Type)

ø — (X) (the empty bag)
ÊXÁ — (X)

(X) È (X) — (X)
(X) fl (X) — (X)
(X) · (X) —

 # (X) —
X# (X) — (a#B represents the number of a’s in B)

Bags are of particular importance because of their close relationship with lists (see
the following section), and lists are important by virtue of their serial nature.

The empty bag has the same value as the empty set, and the same notation is used.
(So Ø: (X), as well as Ø: (X) and Ø: (X). We say that the notation Ø is
‘overloaded’.) The conventions that apply to bags are similar to those used with
sets. The enclosing punctuation is Ê...Á, and Êx,yÁ represents the outcome of the
bag union operation ÊxÁÈÊyÁ but notice that ÊxÁ È ÊxÁ ¢ Êx, xÁ not ÊxÁ and
Êx,xÁ may48 be written as Êx2Á.

4 8 Providing that there is no ambiguity.

102 Constructing Correct Software

We forego any further preliminaries and dive straight into the type specification.
The two variants of ‘#’ are defined inductively by

x#Ø ¢ 0
x#ÊyÁ ¢ if x = y then 1 else 0 fi

x#(B ÈC) ¢ (x#B) + (x#C)

#Ø ¢ 0
#ÊyÁ ¢ 1

#(B ÈC) ¢ #B + #C
Then we have

x#(BflC) ¢ min(x#B,x#C)
x#(B \ C) ¢ (x#B) minus (x#C)

where
m minus n ¢ if n ≤ m then m – n else 0 fi (49)

min(m,n) ¢ if n ≤ m then n else m fi

Also
A · B ¢ (∀x:X)((x#A) ≤ (x#B))

whence
A = B ¢ (∀x:X)((x#A) = (x#B))

Other rules follow in a predictable way. As usual, the Appendix contains a fairly
extensive collection of these rules.

1.4.6 Lists

When we execute a conventional procedural program, we always process input,and
generate output in a specific order. We read and write lists. Lists are finite
sequences of elements. We represent a list by enclosing its elements in angled
brackets and separating them with commas. The order of the elements is
important. Instead of asking whether an element is contained (once or more than
once) in a set or bag, with a list L, a more appropriate question might be “where in
L is there an instance of x?”.

So, using the set of characters {a, b, c, d} as a base, ” b, a, d’ is a list and
”d, a, b’ is a different list. The list ”a, a, a, a, d, a, b’ is also valid (repeats are
allowed), as is the empty list, which is written as ” ’.

Given a data type X, the set of all lists which use elements from X is denoted by
X*, and again we can replace X with any required type.
4 9 ‘minus’ is an infix operator (or macro) where

_ minus _ – (¬x,y:) (if x ≤ y then y – x else 0 fi)
so m minus n – (¬x,y:) (if x ≤ y then y – x else 0 fi) (m,n) .

Technical Background 103

Thus we can have
” 1, 2, 1, 3 ’ ˜ *

Lists can be built using the following operators. For any x: , we can build a
singleton list and represent (the outcome of) this operation by ”x’; and given
lists L,M: * then L»M represents the list that is the concatenation of L and M
in the order given, so

”1, 2’ » ”3, 4’ ¢ ”1, 2, 3, 4’.

We also have a ‘size of’ function, which is again denoted by the operator #,
so

#”1, 2, 4, 6, 7’ ¢ 5
and

#”’ ¢ 0

In much the same way that we have a predicate which tests whether an element is
contained within a set, there is one for testing for inclusion in a list. The
following statements are True:

2 ˜ {1, 2, 3}

2 in ”1, 2, 3’

Other tests include
L is_empty – L = ”’

and L is_atomic – (∃x:X)(L = ”x’)

and, to complete these definitions, we need the predicate ‘L = M’ which has quite a
complex definition but requires that the lists have the same elements in the same
order.

List variables in programs are not the same as conventional arrays. One difference
is that they may change in length. Absolute positions within a list are not very
meaningful; recognition of the end elements and sub-lists is of far more relevance.
Traditionally, the operators head_of and tail_of have been defined to act on non-
empty lists so that, for example,

head_of(”1, 2, 3’) ¢ 1
and tail_of(”1, 2, 3’) ¢ ”2, 3’ .

But these are indicative of how lists were initially implemented. There are no
names which might relate in a similar way to the other end of the list, so we use
the names first_of, rest_of, last_of and front_of, so that

104 Constructing Correct Software

first_of(”1, 2, 3’) ¢ 1
 rest_of(”1, 2, 3’) ¢ ”2, 3’

last_of(”1, 2, 3’) ¢ 3
 front_of(”1, 2, 3’) ¢ ”1, 2’

Now for the signatures. Again they are parameterised by an underlying type:

(¬X::Type)
”’ — X*

”X’ — X*
X*» X* — X*

#X* —
X in X* —

X* is_empty —
X* is_atomic — (True if the operand is a singleton list)

X* = X* —

first_of(X*) — X (
rest_of(X*) — X* (note that the target types
last_of(X*) — X (of these are not the same

front_of(X*) — X* (

Finally, since we often have cause to exclude empty lists, it is convenient to use

the notation X+ for the set (type) of non-empty X-lists.

[Note that the use of ‘decorations’ such as * and + (corresponding to an arbitrary
number of repetitions and to one or more repetitions, respectively) 50 is a concept
that crops up in many areas of Computer Science. Similarly, the use of the same
style of print, such as blackboard capitals (, , etc.) for ‘standard’ sets/types, is
to be encouraged, and we shall try to promote their use whenever they do not go
against historically entrenched usage. More problematic is the use of ‘directed’
symbols (which incorporate an arrow and are not symmetric), such as », when
operations are not commutative. For example, given arbitrary lists L and M, L»M
≠ M»L; but this is difficult to apply uniformly since there are many symmetric
symbols commonly used to indicate non-commutative operations, such as ‘–’ in x
– y, but for arbitrary x,y: , x – y ≠ y - x.]

The construction of arbitrary lists (and all lists are finite) can then achieved
inductively using singletons and concatenation.

5 0 They are not, as in many mathematical contexts, used as arbitrary (local) notation.

Technical Background 105

These satisfy the rules
(¬L,M,N:X*)

(L»M)»N ¢ L»(M»N)
L»” ’ ¢ L
” ’»L ¢ L

But notice that the notation ”x,y’ is a shorthand convention for ”x’»”y’. The
‘,’ is not a list operator, and its use is merely a shorthand convention.

Other common list operators are also generated inductively, as will be seen from
the rules given below, but the operator pairs first/rest and front/last are specified
implicitly but are relational combinations of other operators.

#”’ ¢ 0
#”x’ ¢ 1

#(L»M) ¢ #L + #M

x in ”’ ¢ False
x in ”y’ ¢ x = y

x in L»M ¢ x in L ˘ x in M

”’ is_empty ¢ True
”x’ is_empty ¢ False

L»M is_empty ¢ L is_empty ¯ M is_empty
and

”’ = ”’ ¢ True
”’ = ”x’»L ¢ False

⁄(L = ”’) ¯ ⁄(M = ”’) L = M ¢ first_of(L) = first_of(M)
 ¯ rest_of(L) = rest_of(M)

L = M ¢ M = L
whereas
⁄(L = ”’) L ¢ ”first_of(L)’»rest_of(L)
⁄(L = ”’) L ¢ front_of(L)»”last_of(L)’

106 Constructing Correct Software

1.4.7 Records and n-tuples.

In contrast to lists, which are not of fixed length, we can also have
records or n-tuples (consisting of n ordered data values, which may be of different
types). These are very similar to lists but have special notations for their types and
data values. There are many variations on the actual syntax used; some languages
use yet another kind of bracket, but we shall use forms closely associated with
conventional procedural programming languages.

The idea here is simply that the composite values are constructed by taking values
from a fixed number of (not necessarily distinct) types, in a prescribed order. Again
this is a concept that we have already met when we discussed the relations that
underpin the specifications of functions. There we were concerned with pairs of
input and output values. Typically, in a mathematical scenario, we might have
A Ù B representing the set of all pairs ”a,b’ where a:A and b:B. This concept can
be extended to triples, quadruples, ... , and n-tuples for any integer value n where
n ≥ 1. Of course, the sets/types used in such a construction need not be distinct,
and hence we can use a contracted notation for the type denotation and replace

A Ù A by A2 and An for n-tuples drawn from A. To access the components of
these structures, we need only count up to a certain position, so if x is declared as

x:An , then the ith element can be referenced by x[i], where 1 ≤ i ≤ n . In other
situations it might be more convenient simply to name the components; read on.

A familiar mathematical example is the representation of points in the plane
— ordinary, 2-dimensional, geometry. So we might define

Point – Ù .

and model the plane as the set of all its points, each characterised by two real 5 1

numbers, usually referred to as the x and y co-ordinates. In a computational
context, we will need to access the individual components, or fields , so it is
convenient to name them in the expected fashion and extend the type definition
above to

Point – x: Ù y: .

5 1 We shall use , the set of real numbers — which includes all the integers, all the rational
(fractional) numbers, and all the irrational numbers such as the square root of 2, etc. — in selected
examples. This is because they are familiar, but we must be careful when even suggesting that we
can perform calculations with them. Much to the annoyance of certain groups of would-be computer
users, real numbers are not computable. One fundamental problem is that absolute equality between
two reals is not decidable; 0.99 re-occurring and 1.00 re-occurring represent the same number.
Another difficulty is that between any two distinct real numbers there are infinitely many other reals,
but any computer system can only store a finite number of values!! Also, mainly within specifications,
we shall allow the set/type, , of rational numbers (Q for quotients). For any technical work with
rationals, we can regard them as pairs of integers subject to various extra rules concerning common
factors.

Technical Background 107

Switching examples again, and intentionally re-using the same names so as to
stress that these names are nothing special 52, suppose we had the type declaration/
definition

R – A Ù B Ù C
or R – a :A Ù b:B Ù c:C.

Now introduce a name relating to a value of type R and call it x (i.e. x :R).
Suppose further that we ‘give’ x a value and write x – ”p, q, r’ , or, more
explicitly, x – R:”p, q, r’, to force53 the triple to take on the structure of the
type R, together with its field selectors.
Thus we have

a of x = p b of x = q c of x = r, and each of these
can then be processed in ways permissible for data of type A, B or C, respectively.

Our use of record structures is limited (and is really included only for completeness)
but the availability of such structures allows the specification of more realistic
problems and hence extends the domain in which the techniques can be used. For
example, we typically want to sort records which consist of a key and some other
data even though, as far as sorting is concerned, we are primarily interested only in
the key. So, we might have

Key –
Data – ??? (something appropriate to the particular data set)

and
Record – key:Key Ù data:Data
File – Record*

This models a sequential file of records, each of which consists of an integer key
and some data. When sorting integers, we would typically use the predicate x ≤ y,
where x,y: ; moving to the sorting of records in the File as defined above, this
would become key of x ≤ key of y, where x,y:Record.

Record types do not normally permit empty structures, and therefore it is
convenient — and in some contexts, essential — to allow the inclusion of such an
empty ‘list’ to facilitate termination of a recursively defined structure and associated
processing. For example, we might define a binary tree structure (holding integers)
as follows:

Bin_tree – left:Bin_tree Ù number: Ù right:Bin_tree

However, to be able to use structures like this, we require a ‘way out’; otherwise,
the structures are infinite. Such ‘alternatives’ are facilitated by union types, as we
shall soon see.
5 2 Here we are just playing with the mathematics. In any actual computing context we would try to
use meaningful names which would help comprehension, but remember that, from the technical point
of view, any names would do.
5 3 Technically called a coercion. More about this in section 1.4.10.

108 Constructing Correct Software

There is one other piece of notation that we shall use later but logically is best
introduced here. Recall that, for some given A,

A2 – {”a,b’ | a,b:A}
A3 – {”a,b,c’ | a,b,c:A} etc.

Obviously, this generalises upwards to longer n-tuples, but we can also go down to
include:

A1 – {”a’ | a :A}
and, by convention,

A0 – {”’}.

1.4.8 Union Types

Whilst staying within a regime of strong typing, we can allow variables (obviously
not constants) to be one of several types. To characterise this situation, we build
union types from unions of their base sets. Of course, when it comes to
performing operations on (values derived from) these variables, we need to know
exactly what type it actually is; this is the main problem, and it is solved by using
conditional constructs.

If x:X and X – A Ë B, then we can check the type of x (i.e., check whether it is
an A variant or a B variant) by the construction

if x:A? then ... i.e., if x is of type A then ...

A classical example associated with compiler construction is

Exp – Var Ë Val Ë Binary_exp Ë Unary_exp
where:

Binary_exp – (left:Exp Ù op:infix_op Ù right:Exp)
Unary_exp – (op:prefix_op Ù exp:Exp)

If we then have a value e of type Exp, it can be processed by

 if e:Var? then process as a variable (i.e., an identifier)
 else_if54 e:Val? then process as a value (of a type specified elsewhere)

else_if e:Binary_exp?
then extract the left, right and op components and combine

 the intermediate results as appropriate.
 else (e must be of type Unary_exp)

extract the exp and op components, process and combine fi.

5 4 This is a syntactic extension defined by
if a then b else if c then d else e fi fi – if a then b else_if c then d else e fi

Technical Background 109

We can also relate the union operator to the construction of the list types X* and

X+. These use the ‘big’ version of the union operator (just like and are often
used for the summation and products of numerical sequences):

X* – Ë(0 ≤ n ≤ ∞)Xn

X+ – Ë(1 ≤ n ≤ ∞)Xn

So X* is the, infinite, union of all 0-tuples, 1-tuples, 2-tuples, etc., from X . Of
course, in any specific situation, we need only go up to some finite limit 5 5 .
When X ≠ Ø, X* is an infinite set/type but all its elements are finite.

1.4.9 Sub-Types and Sub-Ranges

There are other ways of deriving new data types. Suppose that we had some type
B, that A·B, and that ‘*’, an operation of type B * B — B . If x * y ˜ A
whenever x,y ˜ A, then we say that ‘*’ is closed on A and (A,*) — the set A on
which the operator A * A — A is defined — A is a type — a sub-type of (B ,*)
— with the ‘*’ operation induced (imported) from B. This idea can be extended
to include cases when there are more operations defined on B. In such cases, all the
operations on B have to be closed on A.

Common examples are when operations on (X) are induced from (X) for any
X. Likewise we can take (natural numbers, integers greater than or equal to 1)
and (positive56 integers greater than or equal to 0) as subtypes of (,+,*), but
0 μ . Similarly can be regarded as a subtype of and of , but there are
tricky problems of representation, so we should not get carried away and try to do
clever things without proper recourse to the relevant numerical analysis.

Also, if D = {x: | (∃y:)(x = 2*y) } — the set of all even integers — then
(D,+,*) is also a subtype of (,+,*), but notice here that 1 μ D.

Sub-ranges (sets of adjacent values from a super-set of integers and lying between
two specified end points) are a special case of this situation in which results that
fall outside the required (sub-)set are treated as errors.

A typical situation, given a,b: with a≤ b, is a..b – {x: | a≤ x ¯ x ≤ b}. This
can be generalised to other situations where a,b:X and X is some finite ordered type.

5 5 Indeed, some theoreticians would argue that to include infinity in this definition is wrong. So, to be
safe, always assume some finite limiting value (limited by the eventual implementation).
5 6 Recall that the definition of requires that it be closed under multiplication and addition (adding
or multiplying elements of gives results in , and multiplication of two negative numbers (in \)
is positive.

110 Constructing Correct Software

So, the basic idea when A·B, is to do the calculation in B and keep only the
results within A. In general, keep proper results and ignore the rest — don’t
include unknowns; make sure that you avoid them.

1.4.10 Type Transfer Functions and Casts

To ensure that we know exactly which transformation rules may be applied to any
given expressions, we demand strong typing57. However, sometimes the types
don’t quite match and we need to ‘force’ a type change in order to be totally
consistent. When this can be done (it is not always possible even when all the
required data is available), we may either invent a suitable function or use the more
general notation

< new type > : < old value >.

The < new type > coerces or casts58 the < old value > into a new form. Think
of this as moulding the given data into a new shape.

For example
if a:X then (X): a = {a}

and
if ” a,b,c ’:X* then (X):” a,b,c ’ = Ê a,b,c Á

These say “make an X set from the X element a” and “ make an X bag from the X
list ” a,b,c ’”. The implied bracketing of these combinations must be

((X): a) = {a} and ((X):” a,b,c ’) = Ê a,b,c Á

The whole point of such constructions is that (X): (a = {a}) makes no sense since
a and {a} are values of different types and cannot be compared, and even if this were
possible, a Boolean result could not be cast into an X set.

We must ensure that the conversion gives a well-defined result, so, for instance,
X*:Ê a,b,c Á would not work since there are six different lists that can be obtained
from the bag Ê a,b,c Á. However, within specifications we could write

(X): A = (X): B where A,B:X*

to indicate that the lists A and B have the same elements. Thus, we must avoid the
temptation to write something like

A = X*: (X): B which is not well-defined.

5 7 This need not be over-restrictive. Remember that we have union types.
5 8 In much the same way that iron can be cast into a particular shape.

Technical Background 111

If it means anything, the right-hand side of the ‘test’ says “take B, obtain the bag of
its elements, and from this make a new list — and determine whether this list is
the same as A”. Notice that even A = X*: (X): A is undefined, since it may give
the value True or the value False when #A > 1.

Of course we have already met this notion before. Recall that if we have the type
declaration R – a:A Ù b:B Ù c:C and x:R, and ”p, q, r’:A Ù B Ù C, then
x = R:”p, q, r’ not only connects the values x , p , q, and r but also links the
selectors, so a of x = p, etc. As in languages such as Pascal, R and A Ù B Ù C
are regarded as distinct types.

For emphasis, we can always attach explicit type information to any value and
write x :T1 (for the appropriate type T1) instead of the more usual x. In certain

situations, the value x can be ‘widened’ to produce an equivalent value which is
subsequently regarded as being of a super-type (of some type T2, where T1 · T2).

Although we must take care so as not to create impossible constructions (i.e., to
create expressions which cannot be evaluated unambiguously), expressions of type
T1 can often be converted into expressions of type T2, and thus strict type

consistency is preserved.

The notation T2: x :T1 is interpreted as follows: take the value x (of type T1) and

create a new object, of type T2, having the same value. (This may be extended to

use types which are not subtypes but for which there exists an appropriate,
reversible, relational connection, or some useful notion of ‘embedding’ — see the
examples below.) We shall restrict discussion to very common cases and to
operations which are constructive, in the sense that they build up new values from
atomic values. Also, because type names are used as operators (casts), we will need
to devise special conventions within the specification of the term re-writing rules to
distinguish between these operators and the usual representation of the types of data
being manipulated; within the formal presentation of the rules, we surround the
operators with quotes “ ”. We shall also include the optional indication of the
result type when this may not be clear.

We consider five situations, the conversion of

(i) Booleans to the integers {0,1}

(ii) (X) to (X)

(iii) (X) to (X)

(iv) (X) to (Y), when X · Y
and

(v) X* to (X).

112 Constructing Correct Software

We first give a few simple illustrations and then the appropriate transformation
rules.

: True ¢ 1 where 1:

so we can ‘force’ True to become the integer 1.

Notice that the full form of this rule is

: True : ¢ 1 :
where the cast appearing at the left-hand side (here “ :”)

is mirrored at the right-hand side (:), where it optionally indicates the type of the
result. This is common and reinforces the similarity in the syntax, and the
difference in meaning, of these constructs.

Of perhaps more obvious application,

(X): {x} ¢ ÊxÁ

or more fully

(X): {x} : (X) ¢ ÊxÁ : (X).

and
(X): L»M ¢ (X): L È (X): M

which again can be written more fully as

(X): L»M:X* ¢ (X): L:X* È (X): M:X*

As usual, these operators can be defined inductively. We give some examples
below and refer the reader to the appendix for a more comprehensive collection.

eqns: (¬a,b: ,x:X,m,n: ,A,B: (X),C,D: (X),L,M:X*)

“ :” True ¢ 1
“ :” False ¢ 0

“ :” a ˘ b ¢ max(“ :” a , “ :” b)
where

max(m,n) ¢ if n ≤ m then m else n fi

“ (X):” Ø : (X) ¢ Ø : (X)
“ (X):” {x} : (X) ¢ {x} : (X)

“ (X):” A Ë B : (X) ¢ “ (X):” A : (X) Ë “ (X):” B : (X)

Technical Background 113

“ (X):” Ø : (X) ¢ Ø : (X) (¢ ÊÁ)
“ (X):” {x} : (X) ¢ ÊxÁ

 (“ (X):” A Ë B : (X)) È (“ (X):” A fl B : (X))
¢ (“ (X):” A : (X)) È (“ (X):” B : (X))

“ (X):” ”’ ¢ Ø (¢ ÊÁ)
“ (X):” ”x’ ¢ ÊxÁ

“ (X):” L»M ¢ “ (X):” L È“ (X):” M

Removing the optional type indicators and the quotes, the rules look much simpler.
For instance

(X): Ø ¢ Ø
and (X): {x} ¢ {x}

Notice that without the extra, emphatic, type information, these type change
operations seem to be without purpose. Only when prompted by an appropriate
CASE59 tool might you be aware of their necessity.

1.4.11 Data Types and Transformations

We now have the basis for what is known as a term re-writing system based on sets
of equations; the rules which define the operations on the different data types are
going to be given by identities (equations) which must always hold. Our
specifications not only give type information but also indicate the syntactic
structure of expressions. In this Chapter, we have also seen how the manipulation
rules give the meaning to expressions (this is again done implicitly — two
expressions are equivalent, and are defined to have the same meaning, if one can be
transformed into the other using the rules).

Remember, our main concern is in writing down properties which define the
functions to be constructed (from the basic values and operations provided by the
underlying programming language support system).

The notation (name) for is fairly standard, but and are not.
(Mathematicians are quite fond of introducing their own notations and,
unfortunately, since the mathematics associated with Computer Science has been
derived from numerous different disciplines there are often clashes of notation. So
be careful to check what notational conventions are being used.)

5 9 CASE, Computer Assisted Software Engineering.

114 Constructing Correct Software

Mathematicians like to ‘decorate’ names, often in ways which differ from day to
day, from problem to problem. In computing, we are usually restricted by the
syntax that text-processing programs (such as compilers) will accept. Nevertheless,
there is considerable deviation — particularly in areas where hand-written
representations are common, such as theory. The freedom to use whatever notation
seems appropriate is to be fiercely defended but can be confusing to most of us,
particularly if we have to read and understand something very quickly. Throughout
this book we shall attempt not to introduce further confusion and try to be
consistent in our use of conventions and decorations (so from we can have *,

+, 2, etc., and even 2 is possible but we won’t use it) and the use of * and +

in other, non-arithmetic, contexts will have closely related meanings.

When we use transformations to derive program designs from specifications, we
shall work on a post-condition and assume it to be True. Ideally it will be in
conjunctive form (i.e., one or more sub-expressions ‘¯ed’ together). Since, to
give the answer True, all the terms of a conjunction must be True, we can use the
information in one term to simplify another. We call this rationalisation.

So, for example, x = y ¯ p(x) can be replaced by p(y) and we can remove x (if this
is a sensible move).

Technical Background 115

1.4.12 On Quantification

So far, we have encountered the logical quantifiers (∀ and ∃) within specifications
and within certain rules, but we do not yet have any rules for the manipulation of
the quantifiers themselves. The whole of Chapter 5 is devoted to an extensive
treatment of quantifications and similar ‘big’ operations on composite data types.
However we shall need some quantification scope rules almost as soon as we start
transforming specifications; hence this Section. The main rules introduced within
the text are collected together in the Appendix for easy reference, so, if we need to
use a rule before it has been properly explained, we can consult the Appendix.
Hence, we do not wish to go into details here but we ought to say something about
the kinds of quantified situations we have already met. They stem from the two (so
far unjustified) implications

(∀x:T)(p(x)) fi p(a) where a:T
and

q(b) fi (∃x:T)(q(x)) where b:T.

The first of these gives rise to the legal substitution of a:T for x in (¬x:T)(p(x)) and
the second to the so-called ‘one-point’ rule which amounts to
(∃x:T)(q(x)) ¢ True providing that you can find some value b:T that ‘works’
(i.e., q(b) ¢ True.

A concept that is familiar to programmers in procedural languages, but quite alien
to most mathematicians, is scope. Within the classic quantifier syntax, such
as

(∃x:T)(....) the second pair of brackets represents the scope
of x, (i.e., the only part of any surrounding expression where x is defined). Any
occurrence of the identifier x outside of the (....)(....) construction refers to a
different quantity. The analogous situation in block-structured programs is

begin var x:T; end
 where the scope of x is ‘begin end’.

The ways in which quantifiers interact with other (typically binary) operators are
determined by rules which are given later, but we briefly mention how the scope of
the existential quantifier (∃) can be changed and introduced.

116 Constructing Correct Software

Given two Boolean expressions p and q,

(x \ p)60 (∃x:T)(q) ¯ p ¢ (∃x:T)(q ¯ p)

and

(T ≠ Ø ¯ x \ p) (∃x:T)(p) ¢ p

If T = Ø, then
(∃x:T)(p) ¢ False

regardless of the value of p.

The corresponding programming situation

begin var x:Ø; end
is, at best, useless and perhaps should be treated

as illegal by the language support system.

Exercises

Specify the following functions. Within the specifications use the name given in
italics on the right.

1.3 Find the maximum of two real numbers. max_of_2

1.4 Find the maximum element in a set of integers. MAXS

1.5 Find a maximal element of a list of integers. Listmax

1.6 Find the positive square root of a positive real number to within a tolerance
of 1/100.

ASR (approximate square root)

1.7 Produce the list of the corresponding squares of the elements of a given list
of integers.

squares

1.8 Determine whether a list of integers vary in value by no more than 10.
within_10

6 0 This is read “x does not occur in p” and means that x is not free for substitution in p. See Section
A3 of the Appendix. In practice this means that either x simply does not occur at all within the
expression or it is itself a bound variable of some other, interior, quantification and hence is a
different x.

Technical Background 117

1.9 Test whether a list of integers is in (strictly) ascending order.
strict_ascend

1.10 Reverse a given list of integers.
reverse

Suppose now that we have some data type, D, and records of structure Key Ù D
(or key:Key Ù d :D), where Key – . Sequential files are modelled as lists of
such records.

1.11 Obtain a sorted (by increasing key order) version of a given file.
sort

1.12 Insert a record into an appropriate position in an ordered file.
insert

1.13 Given a specific key, known to be used in a given file, deliver a file with the
relevant record(s) removed.

delete

1.14 Merge two ordered files. merge

❑

1.5 Applying Unfold/Fold Transformations

As we move towards the task of ‘calculating’ programs from functions, we shall
encounter many kinds of manipulation, some of which are very specialised and
others that, had we been performing the transformations by hand, we might not
even notice.

Probably the most important transformation (important in the sense that it plays a
part in many program derivations) was first identified by Darlington and is basically
used to (re-)introduce recursion. The specifications we have met so far have not
been sufficiently complex or abstract to warrant the introduction of recursion, but
we illustrate the power of the unfold/fold transformation by showing how it can be
used to reduce an instance of double recursion to a single recursion.

118 Constructing Correct Software

Suppose that we are given the functions sum: * — , which sums the elements
of an integer list, and keep_evens: * — *, which creates a copy of a given
integer list in which the odd values have been deleted. These functions may be
defined recursively as follows. (Here we use the function odd: — and presume
that it has been defined elsewhere.)

sum(L) – if L = ”’
then 0

 else first_of(L) + sum(rest_of(L))
fi

keep_evens(L) – if L = ”’
then ”’
else if odd(first_of(L))

then keep_evens(rest_of(L))
else ”first_of(L)’»keep_evens(rest_of(L))
fi

 fi

Now we wish to introduce a new function which is defined directly in terms of
these two. It takes an integer list and delivers the sum of its even elements,
i.e.,

even_sum(L) – sum(keep_evens(L)) see61

To illustrate how programs, written as functions, can be manipulated we offer the
following unfold/fold transformation. Thus far transformations have not been
‘directed’, there has been no clearly identified goal. So as to give some justification
for the calculation that follows, notice that, on the face of it, the evaluation of
even_sum from its definition suggests that we take a list, apply keep_evens to it,
and then process the resulting list with the sum function. We access even list
values twice. The outcome of the transformation gives us a way of evaluating
even_sum which only visits each list item only once and no longer requires the
functions keep_evens or sum.

6 1 Using quantifications (Chapter 5), this function can be specified in a particularly neat way from
which several program designs can be quickly derived.

Technical Background 119

Here goes.

First notice that
sum(”’) ¢ if ”’ = ”’

then 0
 else first_of(”’) + sum(rest_of(”’))

fi

¢ if True
then 0

 else first_of(”’) + sum(rest_of(”’))
fi

¢ 0

Now
even_sum(L)

¢
sum(keep_evens(L))

¢
sum(if L = ”’

then ”’
else if odd(first_of(L))

then keep_evens(rest_of(L))
else ”first_of(L)’»keep_evens(rest_of(L))
fi

 fi)
¢

if L = ”’
then sum(”’)
else sum(if odd(first_of(L))

then keep_evens(rest_of(L))
else ”first_of(L)’»keep_evens(rest_of(L))
fi)

 fi

¢
if L = ”’ then 0
else sum(if odd(first_of(L))

then keep_evens(rest_of(L))
else ”first_of(L)’»keep_evens(rest_of(L))
fi)

 fi

120 Constructing Correct Software

¢
if L = ”’ then 0
else if odd(first_of(L))

then sum(keep_evens(rest_of(L)))
else sum(”first_of(L)’»keep_evens(rest_of(L)))
fi

 fi
¢

if L = ”’ then 0
else if odd(first_of(L))

then even_sum(rest_of(L))
else sum(”first_of(L)’»keep_evens(rest_of(L)))
fi

 fi

¢
if L = ”’ then 0
else if odd(first_of(L))

then even_sum(rest_of(L))
else if ”first_of(L)’»keep_evens(rest_of(L)) = ”’

then 0
 else first_of(”first_of(L)’»keep_evens(rest_of(L))) +

 sum(rest_of(”first_of(L)’»keep_evens(rest_of(L))))
fi

fi
 fi

¢
if L = ”’ then 0
else if odd(first_of(L))

then even_sum(rest_of(L))
else if False

then 0
 else first_of(”first_of(L)’»keep_evens(rest_of(L))) +

 sum(rest_of(”first_of(L)’»keep_evens(rest_of(L))))
fi

fi
 fi

Technical Background 121

¢
if L = ”’ then 0
else if odd(first_of(L))

then even_sum(rest_of(L))
else first_of(”first_of(L)’»keep_evens(rest_of(L))) +

sum(rest_of(”first_of(L)’»keep_evens(rest_of(L))))
fi

fi
¢

if L = ”’ then 0
else if odd(first_of(L))

then even_sum(rest_of(L))
else first_of(L) + sum(keep_evens(rest_of(L)))

fi
fi

¢
if L = ”’ then 0
else if odd(first_of(L))

then even_sum(rest_of(L))
else first_of(L) + even_sum(rest_of(L))
fi

fi
¢

if L = ”’ then 0
else if odd(first_of(L))

then 0 + even_sum(rest_of(L))
else first_of(L) + even_sum(rest_of(L))
fi

fi
¢

if L = ”’
then 0
else

if odd(first_of(L)) then 0 else first_of(L) fi
+ even_sum(rest_of(L))

fi

Thus, we have the promised version of even_sum. The functions keep_evens and
sum used in the original specification have been removed and we only have a single
recursive call left (to even_sum).

122 Constructing Correct Software

Although the manipulation above may seem rather complex — and lengthy — it is
not really all that difficult. You need to be able to work through it, identify the
main steps — namely the unfolding and subsequent folding and the necessary bits
of re-arrangement — convince yourself that it works, and convince yourself that
you could do it.

As already mentioned, one reason for showing the unfold/fold transformation is
because it is a particularly useful one in practice. However, an equally important
reason is to show that transformations of mathematical specifications are possible.
It is just not possible to manipulate English language specifications and procedural
programs in this way.

Exercises

1.15 From the recursive definitions of sum: * — and square: * — * (given
below), derive a representation for sum_square: * — which uses a single
recursive call.

sum(L) – if L = ”’ then 0
else first_of(L) + sum(rest_of(L))

fi

square(L) – if L = ”’ then ”’

else ”(first_of(L))2’ » square(rest_of(L)) fi

sum_square(L) – sum(square(L))

(This is a classic example which has to be included in any discussion of unfold/fold
transformations.)

1.16 Using a recursive realisation of ‘length: * — ’ (i.e., the operator #),

length(L) – if L = ”’ then 0
else 1 + length(rest_of(L))

fi

and the direct definition of average: + — ,

average(L) – sum(L) / length(L),

derive a function sum_length: + — Ù , so that

sum_length(L) – ”sum(L),length(L)’

and then
average(L) – x /y, where ”x,y’ = sum_length(L) .

❑

Technical Background 123

Chapter 2
On Programming

We are not going to try to ‘teach programming’ in the sense that the reader might
understand the term. In this chapter, we are going to make some observations on
programs and programming — and on ways in which programmers have tried to
‘guarantee’ that their programs were ‘right’. In Chapter 3, we shall set about the
formal derivation of programs from specifications. In some sense, therefore, these
chapters are competing. We make no pretence that the competition is fair. For the
reader who skips through this chapter, some common elements are repeated in
Chapter 3.

Of course, not all programs are written by professional or even trainee or student
programmers1; and not all programmers are Computer Scientists or Software
Engineers. Many of those involved in training or examining student programmers
will often advocate the use of well-commented, well-structured code which uses
meaningful identifiers. Nobody would argue with this, but it is certainly not
enough. Merely adhering to these maxims produces programs which look pretty;
programming is more properly about the way in which a program (denoted by the
program text) is derived, how it is built, how it is constructed. What most people
regard as a program — the final text or what it does when it is loaded into a
computer and executed — is merely the output of the programming process.

Paradoxically, most good programs look simple (the converse need not be true), but
it is how you get the program — and how you know that it does what it is required
to do — which is important, not its appearance per se.

1 But by workers in other professions who have decided to, or have been asked to, ‘write a
program’. The mere fact that this situation arises frequently confirms the commonly held — but
certainly erroneous — belief that programming is easy and can be undertaken by almost anybody.
There is more to playing chess (well) than simply knowing the moves.

2.0 Overview.

We start, in Section 2.1, with a discussion about the essential features of procedural
programs and procedural programming. This is the kind of programming which is
most common (so common that the qualification ‘procedural’ is usually omitted).
Other terms are sometimes included (such as object-oriented, or user-centered), but
these do not contradict the fact that much of the central code is still procedural and
hence all that we have to say is still relevant. This is followed with a brief
digression on what some people regard as ‘good’ programming.

Then, in Section 2.3, we start to get a little more technical and introduce the notion
of flowcharts and their structure. We then introduce the PDL language, which we
use for the code of examples throughout the book. Although we give a reasonably
complete description of the syntax (which includes some features that might be
unfamiliar to the reader), the semantics — the meaning — is described less
formally. There is sufficient information to allow the reader to construct and
interpret PDL programs but perhaps not enough for someone to construct a
compiler.

We move, gradually, to the important question of the required and actual effects of a
program by discussing (in Section 2.5) comments and then the related, but more
formal, notion of assertions — executable comments! Assertions can be used to
demonstrate program correctness but are expensive to evaluate. (Essentially each
assertion is a small program, written in another kind of language, and we shall
return to this idea in Chapter 3.) In Section 2.6, we go ‘all technical’ and introduce
the concept of program verification. Here, in principle, we can take a program
together with a formal specification of what it is supposed to compute, and justify,
mathematically, that they fit together in the required way; namely, that for each
valid data input value, the result produced by the program (together with the data)
satisfies the specification. We only consider the verification of PDL ‘structured
programs’ and give the basic verification rules; we do not develop the theory or
illustrate its use. The main reason for this is that using assertions, or verification
(or indeed testing2) is a retrospective process; we have to build a program and then
try to demonstrate that it is ‘right’. And if it is not then we are stuck.

We wish to adopt an alternative approach and move in the opposite direction; we
want to write a program so that it is ‘correct by construction’. This is the central
theme of our book, and hence we go into it in some considerable detail. As a way
of ‘breaking the ice’, we discuss the idea briefly in Section 2.7.

2 As we shall say many times, for programs which are used with many different inputs, testing is
simply not a serious option. Unless you can apply exhaustive test methods (which take more time than
any of us have in a single lifetime), testing can only demonstrate program failure, not correctness.

126 Constructing Correct Software

2.1 Procedural Programming

In procedural programming, the programmer indicates, explicitly, how the
execution of the program should proceed; or how a collection of procedures should
be sequenced, controlled. Most programmers (certainly most ‘occasional’
programmers and indeed many professional programmers) equate all ‘programs’
with ‘procedural programs’ — they are simply not aware of other programming
paradigms.

So, we are not teaching programming, in the sense of coding. We assume that the
reader is familiar with some (possibly object-oriented) procedural programming
language. Here we merely make observations on ‘style’, typical features, and later
(cursory remarks on) their verification.

Procedural programs are thought of as being easy to write because they only do
simple things — essentially assignments. But, it is the ways in which these
simple actions can be combined which cause difficulties in keeping track of the
overall effect caused by these actions.

Characteristically, procedural programs work by causing changes in ‘state’. The
state (of a computation at a particular place in the program, when execution has
reached this point, at this time) can be thought of as the current set of values
associated with the ‘variables’ to which the program has access at that point.

The name x might refer to different locations (and possibly different types of
values) in different parts of the program. Moreover, a given x might be required to
change in value as the execution proceeds, and the value of x at a given place in the
program will often be different when the execution passes through the same place
on a subsequent occasion.

A lot can change, and indeed we require that some values do change, but keeping
track of these changes, and reasoning about them, can be complicated. It is
specifically to avoid (or at least to defer) the complexity of state changes that we
shall adopt the LFP3 scheme for program derivation in Chapter 3. It is also for this
reason that we do not include much detail when describing the (direct) verification
and construction of procedural programs.

In any procedural language (such as our PDL — Program Design Language — in
Section 2.4), there are three basic kinds of components: declarations, expressions
and commands. Declarations introduce new (local) names which will be associated
with entities within the surrounding block. These entities are typically locations
— ‘variables’ in colloquial, but erroneous, terminology — in which we may store
3 Logic, Functions and Procedures, or Logical, Functional and Procedural.

On Programming 127

values of a given type. This type is given in the declaration. We can also declare
functions (see ‘expressions’ below — a function call, here, is little more than a
parameterised expression). A block, in many languages delimited by ‘begin ...
end’, is really a compound command and consists of an optional list of declarations
followed by a list of commands. Declarations perform no computation; they
merely introduce entities which can be used in subsequent expressions and
commands.

Expressions can be evaluated to compute values, and change nothing (in our
language we do not allow ‘unexpected’ side effects). They are well-formed
mathematical expressions and as such follow certain syntactic and semantic rules
— the rules are those given as type specifications in Chapter 1. The evaluation of
an expression gives a value which can be used in a command. Expressions cannot
occur in isolation4. (In PDL, expressions can be conditional, and again the forms
introduced in Chapter 1 are used.) Function calls yield values, and hence may such
calls may occur within expressions.

In general terms, commands are language components which have the facility to
change the values stored in named locations5, to import a value from the input
stream into a named location, export the value of an expression (to the output
stream), or influence the flow of program control.

Though not regarded as essential, we also admit the existence of labels (which
label, identify, commands). Indeed, although very messy, we could regard all
commands as a labelled ‘proper’ command followed by a conditional or
unconditional “goto” statement 6 which then directs the program to the labelled
command to be executed next. Fortunately we can do much better than this — but
flow of control is important and should not be taken for granted or disregarded.

Alternatively, a procedural program could be regarded as a description of journeys
which can be taken around a (control) flowchart. The program text is simply a
description of that flowchart. The route of this journey is sometimes referred to as
the locus of control.

The fundamental building blocks of flowcharts are: one start point, and (for
convenience) one stop point, (optionally labelled) 1-in, 1-out rectangles
representing computational commands7, and diamond shapes with one in path and
two out paths (labelled True and False), the diamond containing a Boolean
4 There is one exception in the shorthand form: the expression which delivers the result of a function
evaluation.
5 They may not always cause a change. For example, when executing the sequence ‘x æ 1;
x æ 1’, the second statement never causes a state change; it replaces the ‘value of x’ with ‘the value
of x’, which is 1.
6 ‘Statement’ is simply another name for ‘command’.
7 ‘Leaning’ parallelograms are also often used to indicate input/out commands. We shall ignore
them since we presume that all input precedes proper processing and output comes last.

128 Constructing Correct Software

expression. These facilitate the switching of control flow between two alternatives.
Graphically, these are typically as depicted in Figure 2.1.

START

STOP

True False

False

True

Figure 2.1

More problematic is how components are put together. We take one START node,
one STOP node and as many computation rectangles and test diamonds as required.
The rectangles can be inscribed with a description of a computational step (a
command) and the diamonds with a Boolean expression. So far, so good. Now
join up the arrows, but preserve the number of inward and outward arrows shown in
the illustration. The only other ways of linking arrows is by means of joining
points, at which several (but usually two) incoming arrows link up with one
outgoing arrow, such as in Figure 2.2.

Figure 2.2

Absolutely any configuration is possible. We certainly are not going to give an
example. Try it for yourself and see exactly why we can end up with what have
been called ‘spaghetti’ programs.

On Programming 129

Execution of a flowchart program is as follows. Control starts at the START node
and follows the arrows until we reach STOP. Upon encountering a rectangle, we
carry out the enclosed command (usually resulting in a state change) and follow the
‘out’ arrow. On reaching a test, we evaluate the enclosed Boolean expression and
follow either the True arrow or the False arrow depending on the result of that
evaluation. Yes, it sounds easy — after all, computers can only perform simple
tasks (but very many, very quickly).

A procedural program (or, more properly, the text of such a program) is simply a
representation of one such flowchart.

By virtue of having only a single way in and a single way out, the entire flowchart
can be regarded as another higher-level ‘rectangle’. Adding extra entry points and
extra (abnormal?) exit points will usually complicate any description of what the
program actually does. It is for the same reason, at a lower level, that the
computational rectangles are restricted to having unique entry and exit points. We
will say more about program structure in Section 2.3.

Other features commonly found in procedural language include recursive
expressions (achieved by means of recursive functions) and blocks which can be
named (and parameterised) to give procedures which may or may not be recursive.
There are also array types, but these are not central to our exposition and will only
be used in certain (small) sections.

2.2 ‘Good’ Programming

Today, most programming is done in so-called high-level languages. One
characteristic of such languages is that they allow the programmer to devise and use
‘long’ names. [But it may not be easy to invent enough names which are
meaningful, distinct, and not too long. Some language implementations have in
the past permitted the use of very long names but then only took notice of the first
‘n’ characters — not so clever!]. They also have English8 keywords that are fixed
in the language and are supposed to convey the appropriate semantic meaning. The
upshot of these possibilities is that the program text can be made more ‘readable’,
less cryptic. In the reverse direction, there is the desire to make the written form of
the program reasonably compact. This is the same argument as applied to
specifications. They should not be needlessly verbose: otherwise, you cannot see
what is there because there is too much ‘noise’.

8 We expect that the reader will encounter these situations, but, for example, French would be
perfectly acceptable for a French reader or writer of programs.

130 Constructing Correct Software

So, for instance, in place of

“evaluate E and store the result in L”
we may write

“put E in L”
or

“E — L” — yes there are languages where assignment
statements are strictly from left to right.

rather than
“L := E” — the ‘:=’ combination being an accident of

(the lack of) technology.
We shall use

“L æ E”. — location L is given the value of expression E.

Within the body of this text9, ‘=’ means ‘equals’ — the predicate, the test — and
nothing else. It certainly has nothing to do with the assignment command per se.

Making the program text more readable reduces the need for comments. Certainly
comments that merely describe adjacent commands in a program are a waste of time
and effort (but see Section 2.5).

[Similar principles can be used when using systems-programming languages.
These look like high-level languages but also have lower level operations.]

2.3 Structuring and (Control) Flowcharts

Any 1-in, 1-out block can be thought of as a state-to-state assignment. Any part of
a flowchart having this 1-in, 1-out property can be regarded as a logical sub-
program and can, for documentation purposes and to aid reasoning, be drawn
separately as a stand-alone flowchart and referenced — in the appropriate position
— in the ‘main’ flowchart by means of a labelled (named) rectangle as shown in
Fgure 2.3.

Figure 2.3
9 Except for brief segments where we try to draw similarities (or familiarity) with more traditional
manipulations.

On Programming 131

In so-called structured programs, only certain ways of combining components into
higher-level 1-in, 1-out ‘structures’ are used. These assist in breaking down the
overall problem/solution into fewer pieces, the computational elements of which
are again 1-in, 1-out. Moreover, the meanings of the components are ‘easily’
related logically to the combination. These are not independent, nor are they
exhaustive. The major ones used are shown, in flowchart form, in Figure 2.4. At
the top left we have the conditional construct “if ... then ... else ... fi”. The test is
performed and either the left or right fork taken, depending on whether the result is
True or False. In the top right of Figure 2.4, we have the often forgotten sequence
construct. This is represented by the “;” operator, the “go - on” symbol. Here we
simply execute the upper command first and then the lower one. Notice that we
use the semi-colon as a separator, not a terminator. In the lower two diagrams in
Figure 2.4, we have two kinds of loop configurations. On the left is a “while .. do
... od” loop in which the test is performed and, if - and only if - the result is True,
the body of the loop is performed and we return (hopefully with a changed state) to
the beginning of the loop and execute the construct again. The loop exits when the
test evaluation yields False. [Remember that the evaluation of a test — and indeed
any expression — causes no change in state.] On the right is a “repeat ... until ...”
construct. Here we start by executing the enclosed command and then we evaluate
the test. We loop back to the start, with the current state, if the result from the test
is False.

The ‘while’ loop is also called a pre-check loop because the test comes before the
body; the body of the loop may not be executed at all. Executed zero times. On
the other hand, the ‘repeat’ loop — a post-check loop because the test comes after
the body — always executes the body at least once.

Notice that by default flow is from top to bottom and left to right, and therefore
many arrowheads can be omitted. But put them in if you feel that any confusion
might arise.

Using only these ways of combining commands and tests within a program means
that there is no technical need for gotos, but labels can still be used to assist in
documentation (comments etc.).

132 Constructing Correct Software

True False

True

True

False

False

Figure 2.4

On Programming 133

2.4 PDL Overview

The language we use to express implementation designs is PDL, which stands for
Program Design Language. It is like many actual languages but is not intended to
be exactly the same as any of them. Indeed, you may also regard it as a pseudo-
code which then needs to be translated into a locally available (supported and
implemented) language.

PDL has deterministic control (it does not have, as is commonly seen in similar
texts, guarded commands, which are loop structures with the possibility of different
execution sequences from a given initial state).

We shall follow the common practice of using the notation A[i] to represent the ith

location of the array A, with A subscripted by i. This is the location, offset by an
amount associated10 with i, relative to the location of (the array base address) A.
Some languages make this more explicit, and perhaps more confusing but
technically correct, by using the notation for a function call; i.e., A.i or A(i).

We do not give a fully formal description of PDL. We do not intend that it
necessarily be implemented, and hence such a definition is not required 11. Instead,
we describe its syntactic structures in a variant of BNF 12 which avoids the need for
more new symbols.

Our style of presenting the syntax of PDL uses capitals to name syntactic classes.
The occurrence of such a name as part of a definition must be expanded using one
of the possible alternatives in its definition. Symbols used as part of the language
(and which therefore might appear within the text of a program) are delimited by
double quotation marks. The lowest level of detail is omitted. Explanations of
related semantic notions are given in italic text.

The syntax is recursive, and hence the syntactic classes have no natural ordering.
We use an ordering that approximates to ‘bottom up’; that is, we describe the
smaller units first and then assemble them into larger units and ultimately an entire
program. Remember, this description is precisely that — a description. In an
attempt to keep the description readable and hence useful, some details have been
omitted.
1 0 The precise details depend on the layout of the computer store and the type of date held in the
array.
1 1 We shun the temptation to include huge amounts of material quite tangential to the main theme of
our text. It is certainly true that programming languages do need formal specifications, which may be
thought of as specifications of compilers, and compilers are programs. But they are very special
programs and best specified using techniques other than the general ones discussed elsewhere in this
book.
1 2 Backus Naur (or Backus Normal) Form, with which we assume the reader has at least a passing
acquaintance. The more traditional form of BNF is used in the Appendix.

134 Constructing Correct Software

IDENT an identifier
is

a meaningful(?) name consisting of a string of letters, digits and the
symbol “_”, starting with a letter

IDENTS a list of IDENTs
is

IDENT “,” IDENTS
or

IDENT

EXP an expression
is

any well-formed expression using the types defined in Chapter 1
or

IDENT “(”EXPS “)” a function call
or

“if” EXP “then” EXP “else” EXP “fi” a conditional expression
the first expression is of type Boolean;
if it yields True, then the middle
expression delivers the result, if False
then the third expression gives the
result. (Here and elsewhere, there is
no specific connection between the
different occurrences of the same class
name, such as ‘EXP’.)

or
EXP “where:” EXP the second EXP yields a Boolean value

— see later in this section.
or

“if” EXP “then” EXP
“else_if” EXP “then” EXP “else” EXP “fi”

one contracted form of nested
conditional expressions

or
CAST “:” EXP

The result from the EXP is ‘coerced’
into the type indicated by the CAST.
Refer to Section 1.4.10

CAST
is

TYPE

On Programming 135

TYPE type
here undefined but includes all the type indicators given in Chapter 1

TYPES
is

TYPE “,” TYPES
or

TYPE

EXPS an expression list
is

EXP “,” EXPS the “,” is a list separator
or

EXP

DEC a declaration13

is
“var” IDENTS “:” TYPE a ‘variable’14 declaration

or
IDENT “(” IDENTS “)” “–” EXP a function declaration

or
IDENT “(” IDENTS “)” “–” “(” EXP “)” alternative form

or
IDENT “(” IDENTS “)” “–” BLOCK a function / procedure

declaration
a form of function declaration in
which each flow through the BLOCK
terminates in an EXP, implicitly or
explicitly assigned to the ‘result’.
Without a ‘result’, this is a procedure

or
IDENT “–” BLOCK15 a procedure declaration

a procedure with no parameters
or

“var” IDENT “[” TYPES “]” “:” TYPE an array declaration
the TYPES are index types and must
be subranges. TYPE is the type of
the data held in the array.

1 3 Other contracted forms are also allowed by way of ‘syntactic sugar’.
1 4 These are names of constant locations, but the contents can be changed. Hence they are often
described as ‘variables’.
1 5 Or a statement other than a ‘goto’ statement.

136 Constructing Correct Software

DECS declarations
is

DEC “;” DECS
or

DEC
STMT a statement
is

IDENT “:” STMT the identifier is a label
or

BLOCK
or

STMT “«” STMT parallel execution
or

“skip” the skip command, change nothing
or

IDENT “æ” EXP assignment, evaluate the EXP and
pass the value to the location
associated with IDENT

or
IDENT “[” EXPS “]” “æ” EXP assignment to an array element

or
” IDENTS ’ “æ” ” EXPS’ parallel assignment. The lists are of

equal length and of corresponding
types. All the EXPS are evaluated.
Then the values are deposited in the
locations named by the
corresponding IDENTS.

or
“if” EXP “then” STMT “else” STMT “fi” conditional statement

or
“if” EXP “then” STMT “fi” contracted form, presumes “else skip”

or
“if” EXP “then” STMT “else_if”

EXP “then” STMT “else” STMT “fi”
one contracted version of one form of
the nested conditional statement.

or
“while” EXP “do” STMT “od” ‘while’ loop16, EXP is Boolean

or
“repeat” STMT “until” EXP ‘repeat’ loop, EXP is Boolean

or
“goto” IDENT IDENT is a label in the same BLOCK

1 6 We could also have ‘for’ commands as syntactic sugar for certain ‘while’ loops.

On Programming 137

or
[“result æ”] EXP delivers the result of a function

evaluation
[“result æ”] denotes optionality

or
IDENT “(” EXPS “)” procedure call

or
IDENT procedure call with no parameters

BLOCK17

is
“begin” DECS “;” STMTS “end”

or
“begin” STMTS “end”

STMTS
is

STMT “;” STMTS
or

STMT

PROG a program
is

BLOCK

We also have comments and assertions. These may be placed between statements.

COMMENT
any sequence of characters (other than quotation marks)

delimited by “ and ”.

ASSERTION
“$” EXP “$”

or where EXP is of type Boolean
“$” “assert” EXP “$”

These syntax rules can be used either in the generation of programs or the analysis
of strings (as part of the process of determining whether you have a valid program).
They can also be regarded as rewrite rules, albeit in a context different from that

found throughout the rest of this book.

2.4.1 “Let” and “Where”. Conventionally, and for very good practical reasons,
most procedural languages require that all named entities, functions etc., be declared
before use. This is the ‘let’ style of presentation, even if the word ‘let’ is not used

1 7 And “(...)” can be used in place of “begin ... end” as delimiters.

138 Constructing Correct Software

explicitly. This is available in PDL, but for use in intermediate forms we also
have the ‘where’ style, which allows the use of incomplete (or general) expressions
that are then completed (or restricted) by quoting additional Boolean information,
definitions or specifications.

For example:

x + f(y) where: x = a + b and f – (¬x:X)(x + 3)

which means a + b + y + 3

2.4.2 Scope and Parameters. ‘Variables’ referenced within a block but not
declared within that block are those declared within the smallest surrounding block.
Within function and procedure calls, that block is a block surrounding the call
rather than the declaration. Notice also that parameters are passed by value and are

therefore constants, which cannot be changed within a function or procedure.

2.5 Comments and Assertions
Programs written in modern programming languages should be very nearly self-
documenting and hence there is less need for comments. Nevertheless, comments,
if up-to-date and related to the code, can be very useful. However, they may not
have anything to do with the code. They may be out of date, or just plain wrong.

Comments are sometimes written at the same time as the code and hence are likely
to be related to the code (in a meaningful and relevant way). When code is
modified, since the comments are ignored by the compiler and need not be changed
in order to make the code work, it is probable that the comments are not modified.
Hence the comments, even if helpful once, may not always be so. The fewer the
comments, the easier it is to ensure that they are up-to-date.

Of course, they are only there for the benefit of the human reader; they are totally
ignored by the compiler.

Instead of comments, we could use assertions — executable comments. If the
evaluation of an assertion (the body of an assertion, is a Boolean expression) gives
the value False, then the program is aborted (halted) preferably with some
indication of where the failure took place. If the assertion yields True, indicating
that some property you thought ought to hold (at that point in the program) was
actually true, and execution of the program continues, albeit at some computational
cost. Using the pre-condition18 as an assertion immediately after the input phase
reflects the assumptions made about acceptable input values19.

1 8 Part of the specification of the function which the program is supposed to compute.
1 9 Together with the data type constraints imposed by the read command is as far as we can go to
cope with robustness.

On Programming 139

Similarly, if we keep a copy of the input values (and that means making no
subsequent changes to the relevant ‘variables’), then, just before the output phase,
we can include the post-condition as another assertion. This would then check that
the answer which we had computed was in fact an acceptable answer for the given
input.

This sounds fine, and it is much easier than doing lots of technical work with
specifications and programs, but evaluating assertions can be very expensive and
take huge amounts of time and other (machine) resources. Moreover, placing
assertions between every pair of commands and including all information that the
programmer thinks may be of relevance would make the text completely
unreadable. Of course, the assertions which are True immediately before a certain
command are logically related to those that are True immediately afterwards, and
hence not everything need be repeated.

The see how these assertions are connected mathematically, we consider the three
basic computational components of a flowchart. These are depicted (with
assertions) in Figure 2.5.

Xæ Y

P

Q

R
B

Q

P

True False
P Q

R

Figure 2.5

The three kinds of component are tests, joins and assignments. The first two are
often forgotten because nothing seems to be happening, but they are crucially
important. In Figure 2.5 the assertions (annotations?) are Boolean expressions but
we shall also treat P, Q and R as being synonymous with labels at the positions
indicated on the segments of the flowchart.

In the test flowchart, any facts within P are clearly also within Q and R since we
have done nothing to change that information(?). Here we assume that the test B
was useful within the program and hence that either outcome of the test was

140 Constructing Correct Software

possible. If this is not so, then we could simply always go from P to Q, or always
go from P to R, and remove the test. By similar reasoning, Q and R should be
different; otherwise it makes no sense to ‘follow’ them with different program
segments. So what is the difference? The difference is that at Q we know that the
value of B is True and, if we get to R then the value of B is False. Hence we can
write

Q ¢ P ¯ B and R ¢ P ¯ ⁄B

These are the strongest assertions which can be used in positions Q and R . We
may not wish to retain all this information; we may simply not need it, and hence
some of the information could be discarded without compromising further
reasoning. However, in all cases we do know the following:

P ¯ B fi Q and P ¯ ⁄B fi R

This helps in appreciating the inter-relationships between the assertions associated
with the join flowchart. Here, we have:

P fi R and Q fi R

These implications always hold. The (logically) strongest assertion we can use for
R is

R › P ˘ Q
— we simply do not know which branch we followed

on our way to R.

Now for explicit computation steps, as indicated by rectangles within flowcharts.
First notice that we have written an assignment command to represent the
computational process between $ P $ and $ Q $. Any command20 can be regarded
as an assignment, albeit, in general, a parallel multiple assignment (in which n
expressions are evaluated and then placed in the corresponding named locations),
with the possibility of conditional expressions and/or recursive function calls. So,
in restricting consideration to an assignment, we lose nothing.

Obviously, with complex expressions, logical reasoning is more complicated; we
shall content ourselves with simple illustrations to introduce the necessary
relationships.

The situation depicted in Figure 2.5 can be written as

$ P $
X æ Y
$ Q $

2 0 Other than a ‘goto’ command.

On Programming 141

If we need Q to be True, what can we say about P? That is, what do we need to be
True at P in order to guarantee that Q will be True after we have executed the
assignment statement? Suppose either that P is initially absent or that it is present
but tells us nothing (it provides no information, no reason for halting the
program), in which case it is logically, identically, True.

Example 2.1
$ P? $
z æ x + 9
$ z > 0 $

For P we could have x + 9 > 0 since the final value of z is equal to x + 9 and
hence the properties of z must be equivalent to the properties of the expression
x + 9. In fact, here we can say more:

$ x + 9 > 0 $
z æ x + 9
$ z = x + 9 ¯ z > 0 $

❑

Of course, it gets rather involved if values change (and we often need them to) as in

$ x + 9 > 0 $
x æ x + 9
$ x > 0 $

In general, if we have

$ P $
X æ Y
$ Q $

then, given Q, we have that

P fi Q[X æ Y]

That is, given P (is True) we can deduce the expression Q in which X has been
replaced by Y. P must logically include Q[X æ Y].

Of course, the coincidental use of this notation is not accidental. If P initially tells
us nothing (so it is identically True) then we can have P › Q[X æ Y] and hence

$ Q[X æ Y] $
X æ Y
$ Q $

142 Constructing Correct Software

Example 2.2 We can extend this idea in a natural way; for instance

$ (x + 9) * 2 – 1 > 0 $
x æ x + 9;
$ (x * 2) – 1 > 0 $
x æ x * 2 – 1
$ x > 0 $

Consequently, we can remove the intermediate working and simply write

$ (x + 9) * 2 – 1 > 0 $
x æ x + 9;
x æ x * 2 – 1
$ x > 0 $

❑

Working backwards from the final required predicate, the post-condition, we can2 1

— in principle — move through a finite sequence of statements (each equivalent to
an assignment statement) with the aim of obtaining an initial assertion (which
logically follows, using ‘¿’, from the post-condition).

But there are problems. Very few procedural programs are totally sequential but
involve some repetition, such as loops, a possibility which we consider below.

More serious is the possibility of including an inappropriate assignment which
effectively destroys information, making it impossible to complete the calculation.
[If a program is wrong, there is no way that assertions can be inserted which prove
it correct!] Moreover, an assertion is applicable at one specific point in the
program code (although that point may be revisited on numerous occasions), but a
specification, in particular the post-condition part of a specification, refers to the
input a n d output of a (sub-) calculation. Hence, to use assertions to
enforce/affirm/check adherence to a specification requires that we keep a copy of the
original input values to the corresponding segment of code.

We need to address the possibility of state changes (which are fundamental to the
philosophy of procedural languages) and slip from a classical function, f , to a
(computational) operation 22, F. To illustrate this, consider the pair of assignment
commands

y æ f(x)
and

”x’, y’’ æ F(”x, y’)
2 1 There is an extra technicality involved here, which means that we may need to refer to an earlier
‘state’.
2 2 These are akin to commands in programming languages, not traditional mathematical operations,
which are merely alternative syntactic forms for common functions.

On Programming 143

For these to represent the same action, we need to interpret the second as

y’æ f(x)
and

x’æ x assuming that x and y are different.

or, more generally,

σ’æ F(σ)

where σ (lower case Greek letter sigma) denotes the state, which can be thought of
as the n-tuple of (allowed/accessible) locations, and σ’ (and, as required, σ1, σ2 etc.)

represents the same n-tuple at another point in the program. Remember that we are
usually dealing with changes in value, and hence σ may represent different values
even within the same command.

So, instead of
σ’æ F(σ)

we would usually write (in PDL)

σ æ F(σ)

which represents the context shown in Figure 2.6.

F or σ æ F(σ)

σ1

σ2

σ1

σ2

Figure 2.6

Here, the state σ2 can be calculated from σ1 using

σ2 ¢ F(σ1) derived from σ2 – F(σ1)

Having set up the necessary notation, we can explain the basic concept of
correctness. Suppose we had program P, which was intended to compute some
function F specified using pre-F and post-F. The program (or program segment) P
is linked to states σ1 and σ2 as in Figure 2.7.

144 Constructing Correct Software

P

σ2

σ1

Figure 2.7

For P to correctly compute the specified function, F , we must be able to
demonstrate the truth of the implication:

pre-F(σ1)

¿
post-F(σ1, σ2) where σ2 = P(σ1)

Therefore, in terms of assertions, we need

P

σ2

σ1 pre-F(σ1)

post-F(σ1, σ2)

Figure 2.8

To implement such (post-) assertions we need to allocate extra storage to save the
value of σ1 for future use. Clearly, the problem of extra storage and its

management can get out of hand, particularly when we try to decompose P into
smaller parts more closely resembling primitive (rather than multiple) assignments.
However, this is more manageable when we insist on the discipline of structured
programming, as in the next section.

So, we can relate assertions within programs to the specifications of the
functions/operations they are intended to compute. We have seen a simple example
of how an intermediate assertion can be removed once it has been used to establish
the logical link between earlier and later ones.

Verification (the next section) may thus be seen as removing the need for
assertions, and hence because, for valid input, the output is correct, the post-
condition (which is usually very expensive to calculate/evaluate) does not need to

On Programming 145

be included explicitly. All predicates used in the verification proof obligations (in
Section 2.6) may be ‘implemented’ as assertions (and, by some, regarded as more
practical than theoretical)23 but at considerable cost and risk.

We make one final observation on assertions. Very many true but irrelevant pieces
of information can be included within acceptable assertions. These add nothing to
our understanding of the computational processes and can be very distracting and
misleading. They also make the evaluation of assertions more complex and time
consuming to compute. Therefore, to be informative to the reader, assertions
should be as concise as possible, whilst providing adequate information to enable
the logical links with the specifications to be established.

2.6 Verification of Procedural Programs

Verification of a program is the process of justifying that it is correct with respect
to (wrt) its specification.

This means that

“for every valid input, the program runs to completion
and delivers an acceptable (correct) result”.

Using the formal notation introduced in Chapter 1, we can express this requirement
as a theorem, the correctness theorem:

f is a correct implementation (of its specification) if

(∀x:X)(pre-f(x) ¿ post-f(x, f(x)))
where

pre-f(x) – ... the test for valid input x
post-f(x,y) – ... the test that y is a valid output for input x

Another way to look at verification is to regard it as justification for the removal of
all24 assertions (because, for valid input, the output is correct, so the usually very
expensive post-condition does not need to checked/evaluated)

2 3 This is, of course, not true. The only difference is that failure in verification prevents a program
being ‘delivered’ and used; failure in the evaluation of a run-time assertion would cause the program
to fail/abort/halt at run time, and this may be catastrophic.
2 4 With the possible exception of that associated with the pre-condition to address the problem of the
robustness of a program.

146 Constructing Correct Software

Reasoning (constructing useful assertions and hence eventually including the pre-
and post-conditions) with an arbitrary flowchart program can be very hard.
Fortunately, Structured Programming comes to the rescue.

Identifying states by σ1, etc., as in Section 2.5, we give the required logical

relationships between various points (positions, ‘line segments’) in the flowcharts
of non-atomic structured program components.

Note that here we are not concerned with how a program is created but presume that
a program has (somehow) been written and the task is to verify that it satisfies a
given specification — retrospectively!

The structure of a ‘structured program’ is defined so that any 1-in, 1-out segment is
either a single, atomic, command or can be decomposed into smaller components
using one of the following forms25, which we have already met:

(1) Sequencing P; Q

(2) Alternation (choice) if b then P
else Q

fi

(3) Iteration while b
do P od

For each of these we attach ‘state markers’ and then quote the so-called ‘proof
obligations’ which when discharged (i.e., proven to be True) guarantee correctness
of the overall combination, provided that its proper sub-components are correct
(relative to their own specifications).

2.6.1 Sequencing
We refer to the flowchart in Figure 2.9.

P is a correct implementation of (the specification of) F1

if (∀σ1) pre-F1(σ1) ¿ post-F1(σ1, σ2)

where: σ2 = P(σ1)

So, taking the (∀σ1) as implicit,

pre-F1(σ1) ¿ post-F1(σ1, P(σ1))

2 5 Others are possible, but they can be derived from the three given here; they are syntactic sugar.

On Programming 147

P

σ2

σ1

σ3

Q

Figure 2.9

Similarly, Q is correct wrt F2 if

pre-F2(σ2) ¿ post-F2(σ2, Q(σ2))

We require that the sequential combination P; Q be correct wrt F,

i.e., pre-F(σ1) ¿ post-F(σ1, Q°P(σ1)) see26

Instead of trying to tackle this directly (which could be quite difficult since we may
not know explicitly the details of P and Q , but merely that they are correct
implementations of F1 and F2 respectively), we consider the inter-relationships

between states and take our lead from the flowchart.

The logical links (rules) are:

D1: pre-F(σ1) ¿ pre-F1(σ1)

D2: pre-F1(σ1) post-F1(σ1, σ2) ¿ pre-F2(σ2)

R1: pre-F(σ1) post-F1(σ1, σ2) post-F2(σ2, σ3)

¿ post-F(σ1, σ3)

Notice that these rules do not mention P and Q explicitly; we only need to know
that they satisfy their respective specifications. These rules together justify that P;
Q satisfies F.

D1 and D2 are domain (or data) rules. D1 says that we can start to execute P if we

can start to execute P;Q.

2 6 Recall the change in order, which is necessary so as to fit with the ‘function of a function’
notation.

148 Constructing Correct Software

D2 says that, after executing P, the state reached (σ2) is suitable for input to Q.

R2 is a range (or result) rule. This says that with a suitable initial state (σ1) we can

first derive σ2 and then σ3, which is a correct output for P;Q relative to the initial

state σ1 and (the specification of) F.

Already27 we know something about how σ2 is related to σ3 (in such a way that Q

always works correctly), but working forward is more difficult.
❑

2.6.2 Alternation

For this, see Figure 2.10.

σ2

σ1

P Q

b
True False

σ1

σ1

Figure 2.10

With the previous assumptions about P and Q, we now consider the requirements
for the construction:

if b then P else Q fi satisfies the specification G.

Using the same kind of diagrammatic/logical reasoning, we have

D1: pre-G(σ1) b(σ1) ¿ pre-F1(σ1)

D2: pre-G(σ1) ⁄b(σ1) ¿ pre-F2(σ1)

R1: pre-G(σ1) b(σ1) post-F1(σ1, σ2) ¿ post-G(σ1, σ2)

R2: pre-G(σ1) ⁄b(σ1) post-F2(σ1, σ2) ¿ post-G(σ1, σ2)

2 7 See Section 2.5.

On Programming 149

Here the D rules check that σ 1, the initial state, is a valid input for the

combination, together with b being either True or False ensure that P or Q can be
executed correctly wrt their own specifications. The R rules then check that the
results / changes produced by P and Q, respectively, fit with those required by G.

❑

2.6 .3 Iteration. This is the most complex construct. For total correctness 28 a
‘while’ loop can pass through a finite but unbounded number of states29.

We first deal with partial correctness. By this we mean that, if we get to the end,
the result is acceptable, but The reasoning here is similar to that used for the
previous constructs but with two extra (seemingly unproductive but logically
useful) predicates which provide a link between one iteration and the next. The
implications can be deduced by the use of recursion together with sequencing and
alternation, but we shall go straight to the rules.

We want to use the construct

while b do P od to implement H.

Again we appeal to a flowchart with some named states; see Figure 2.11.

σ2

σ3
P

b

True

False

σ1

Figure 2.11

Notice that although σ1 and σ3 are visited only once, σ2 may be visited many

times. Here is where invar is evaluated.
2 8 Here ‘total’ correctness stresses what we have implicitly taken for granted — that the evaluation
of an expression or command terminates, concludes, in a finite number of steps.
2 9 Each loop will exit legally in n steps, for some n: , but we can always construct a case where we
will need more than n steps.

150 Constructing Correct Software

Now, ‘out of the hat’ we postulate the predicates:

invar: state —
and

to-end: state Ù state — .

The rules which allow us to join the three marked places and the computational/test
components are:

D1: pre-H(σ1) ¿ invar(σ1) enter the loop

(pre-H(σ1) ¿ invar(σ2) but no calculation takes place,

 so on the first time through σ1 = σ2)

D2: invar(σ2) b(σ2) ¿ pre-F1(σ2)

remember that P satisfies F1

D3: pre-F1(σ2) post-F1(σ2, σ2’) ¿ invar(σ2’)
round again, σ2’ is σ2 on the next iteration.

R1: invar(σ2) ⁄b(σ2) ¿ to-end(σ2, σ3)

no change has taken place here so, at this stage
of the iteration we could write

invar(σ2) ⁄b(σ2) ¿ to-end(σ2, σ2)

R2: pre-F1(σ2) post-F1(σ2, σ2’) to-end(σ2’, σ3) ¿ to-end(σ2, σ3)

link the final state to a σ2 state which is one

iteration further back, if there is one.

R3: pre-H(σ1) to-end(σ1, σ3) ¿ post-H(σ1, σ3)

link back to initial state, σ1.

The justification that this does prove partial correctness of the loop follows from
‘joining up’ segments of any execution path through the flowchart. For each rule,
track it through the relevant part of the flowchart (Figure 2.11). We shall not
attempt an inductive proof that the rules are suitable; In Chapter Four you will see
that these rules are not necessary. They are included here for completeness and
because it is via such rules that the science of verification was developed30.

3 0 The thesis of this book is that we should construct a program to be correct, not that we write a
program and then, retrospectively, (try to) prove it to be correct.

On Programming 151

But we have not yet finished. We provide a mechanism to show termination of an
iterative loop. Technically, we need a ‘well-ordering’ on the different σ2 states as

the iteration progresses. We require a function:

term: state — (at the σ2 point in the flowchart)

Evaluation of term on successive iterations of the loop must yield strictly reducing
integer values, reaching zero when we eventually exit from the loop. Hence the
rules are:

T1: pre-H(σ1) ¿ term(σ1) ≥ 0 initial value

T2: invar(σ2) ¯ (term(σ1) > 0) ¿ b(σ2)

T3: invar(σ2) ¯ (term(σ1) = 0) ¿ ⁄b(σ2)

(so (term(σ) = 0) › ⁄b(σ2),

term is a measure of how close we
 are to the exit condition)

T4: pre-F1(σ2) post-F1(σ2, σ2’) ¿ term(σ2’) < term(σ2)

Again you should check the rules against segments of Figure 2.11. In practice,
given the code, the selection of a suitable expression with which to define term is
usually quite straightforward, providing that the loop actually does terminate.

The analogue of term in the recursive situation will be seen as very important
(Section 3.1). It cannot be avoided, but once it has been successfully handled, it
will guarantee that derived loops terminate automatically.

❑

So that is how (logically and physically) components (commands) can be
assembled and linked to their specifications. But what are the ‘atomic’ units from
which they are constructed? They are Boolean expressions, about which we shall
say nothing further, and either composite processes (which logically add nothing
new) or multiple assignments such as

”x, y, ... ’ æ C(”x, y, ... ’) where C denotes a computation,
 a function.

or
 σ æ C(σ)

152 Constructing Correct Software

whence $ P(σ) $
σ æ C(σ)
$ P(σ) ¯ σ’ = C(σ) $

where σ is the state before the assignment and σ’ is the state immediately after its
execution.

But is the assignment correct? What is P?

Essentially, both these questions relate to a specification; let’s suppose it is
[pre, post]. Using assertions, we could require that

$ assert pre(σ) $
σ æ C(σ)
$ assert post(σ, C(σ)) $

If σ represents all the data to which the program has access, then this works
perfectly well and we can use these relationships (again) but now we write them as
proof obligations.

The assignment σ æ C(σ)

is a correct implementation of the specification J if

D1: pre-J(σ) ¿ pre-C(σ)

R1: pre-J(σ) post-C(σ, σ’) ¿ post-J(σ, σ’)

Often, by design, the calculation, C, can always be evaluated, and hence pre-C(σ) is
True and therefore D1 holds. Moreover, R1 can often be simplified to

pre-J(σ) ¿ post-J(σ, C(σ))

So, for example, if J is [x > 0 , y’ > x + 3] and we have the assignment

y æ x + 6 where: x,y:
Namely

”x, y’ æ ”x, x + 6’
so

”x’, y’’ = ”x, x + 6’

On Programming 153

then, since the validity of x > 0 implies that x must have some valid value,

D1 ¢ True

and
R1 ¢ pre-J(σ) ¿ post-J(σ, C(σ))

¢ pre-J(σ) ¿ post-J(”x, y’, ”x’, y’’)
¢ x > 0 ¿ y’ > x + 3
¢ x > 0 ¿ x + 6 > x + 3
¢ x > 0 ¿ 6 > 3
¢ x > 0 ¿ True
¢ True

So, that is all we want to say about verification. Theorists would say that this is
all we need, but finding feasible predicates and then showing that they work — by
discharging the proof obligations given above — is very time consuming, even
with a tame theorem prover to do all the calculations, hopefully in an error-free
way. And what if one of the required obligations is False? There is no routine way
of correcting an error even when we have located it. The actual problem may be
elsewhere in the program, not where it has caused a problem.

Can we do anything about this? Can we apply the basic theory in a different way?
Yes, as we will show in the next section.

2.7 Program Derivation
Just as we usually assume ‘correctness’ of computer hardware when we run a
program, we must also presume that the language support systems are also
‘correct’. We are therefore more properly concerned with contextual correctness (or
relative correctness), so running the hardware system, the run-time system (etc.),
and the user program together, in parallel, works in accordance with the
specification. Of course, the only component within this parallel combination on
which we have any influence is our own program. If any of the other components
is ‘wrong’ in some way, there is nothing that we can do to fix the error. We can
only try to ensure that our contribution is error-free.

Given a program, we could attempt to argue its correctness using assertions. But,
apart from the assertions which express the pre- and post-conditions (as supplied
within the given specification), other, intermediate, assertions can be difficult to
find. And once we have found them and used them to substantiate adequate logical
connections between the program components, since they could be expensive to
evaluate, we may remove31 them or convert them into comments.

3 1 Adequate (minimal) assertions c a n b e deleted, or transformed (using ¢) but not otherwise
changed.

154 Constructing Correct Software

An alternative approach is to start with the specification and use it to create a
program design. One way to view this process is to begin with a single unknown
command (one which is totally lacking in detail), as in Figure 2.12, and try to ‘fill
it in’.

P

input

output

Figure 2.12

A general technique for the construction of program P is to ‘divide and conquer’ the
problem and build it from smaller ‘sub-programs’ which solve ‘parts’ of the
problem; but in a way that is consistent with the logical requirements within the
specification.

Two (of the many) ways in which this could be done are by ‘vertical
decomposition’ and by ‘horizontal decomposition’. These can be illustrated as in
Figures 2.13 and 2.14

P1

input

output

P2

intermediate

Figure 2.13 Vertical Decomposition

On Programming 155

In vertical decomposition, P1 takes the input and produces an intermediate result (or

state), which then acts as input to P2. Execution of P2 then delivers the final

result. This can be written as:

output ¢ P2(P1(input))

which fits exactly with the concept of a ‘function of a function’. But, again,
determining a suitable intermediate state is not always easy.

P

input

output

P3 P4

Figure 2.14 Horizontal Decomposition (i)

P3

input

output

P4

Figure 2.15 Horizontal Decomposition (ii)

In horizontal32 decomposition, the input is divided up (somehow), each part is
processed separately, and the two (or more) intermediate results from P3 and P4 are

combined to give the overall result, from P.
3 2 Of course. drawing the diagrams so that the flow is left to right would mean that the use of
alternative (opposite?) terminology would seem ‘natural’. Be careful. As in many situations, the
terminology is not ‘standard’.

156 Constructing Correct Software

Much of the material presented in Chapter 3 concerns variants of horizontal (de-)
composition. In practice, most program derivations involve a mix of the two
approaches, applying vertical decomposition whenever an opportunity (usually a
clear case of ‘function of a function’) presents itself.

On Programming 157

Chapter 3
Algorithm Extraction

We are now in a position to start assembling a chain of processes which can be
used to transfine the specification of a function into a scheme for the
implementation of a program that, given suitable data, can be executed to calculate
the function. In most cases, we shall have to use a mix of different design
strategies for transformation and refinement. So far we have only met (reversible)
transformations1 (refinement comes later), and so we shall have to make specific
structure choices which will preserve the deterministic nature of our specifications.
In Chapters 5 and 6, we shall be able to handle non-deterministic specifications and
introduce general decomposition methods (which must then be particularised to
make the resultant design deterministic, i.e., we must choose from a set of
alternatives, and this then involves an irreversible step in which some superfluous
information is, intentionally, discarded).

In this chapter we examine the first part of the program construction process: we
derive a recursive program scheme. In Chapter 4, we derive (conditional) rules
which can be used to replace recursion by the more familiar iterative program
constructs, primarily while loops. This order of presentation is logically correct,
but if the reader is worried about introducing recursion into a program, then Chapter
4 should reassure him that it can often be removed and replaced by iteration.
Chapter 4 results in program designs which look more like conventional procedural
programs, which we hope are more familiar to the reader. At the risk of
encountering a few unexpected back references, the reader could study these chapters
in reverse order without any great loss.

1 Using ‘¢’ replacement rules to rearrange expressions.

3.0 Overview

Suppose that we have the specification

spec-f: (X Ù Y) – [pre-f, post-f]
where

pre-f(x) – ...
post-f(x,y) – ...

The correctness theorem for any implementation, f, which satisfies this
specification is

(∀x:X)(pre-f(x) ¿ post-f(x, f(x)))

This says that the implementation f is correct if for any x:X which satisfies the pre-
condition (so that x is ‘good data’) the pair of values x and f(x), the result obtained
from x when processed by f, together satisfy the post-condition. Recall f is a
function so, for given x, the value f(x) is unique.

In the classical approach to program verification as discussed briefly in Chapter 2,
an implementation f has to be obtained and then the correctness theorem proved:
i.e., we must first find some f and then show

(∀x:X)(pre-f(x) ¿ post-f(x, f(x))) ¢ True.

We adopt a fundamentally different approach.

We assume that an answer, an implementation of f, does exist, that x is an input
value (any valid input), so that pre-f(x) ¢ True (see 2), and that y is the result
delivered by applying f to x.

The conditional expression

 (pre-f(x)) post-f(x,y)
is then presumed to be True and regarded as a

logic program in which y is defined implicitly in terms of x using the predicates
pre-f and post-f.

Of course, there may be no such answer; the set of acceptable implementations may
be empty. To test for this in advance is not always possible; however, problems
with the specification — including the lack of acceptable answers, which we strive
to eliminate — should give rise to technical problems during development,
derivation, and hence, albeit later than is desirable, cause the specification to be
revisited and revised.
2 If pre-f(x) is False, then x is unsuitable data for f and we will not try to compute f(x).

162 Constructing Correct Software

Notice also that taking as given the set of all ”x,y’ pairs which give True from
this expression can itself be viewed as an implicit description of any function(s) f
which correctly implement this specification. Essentially our job is to derive an
explicit representation, a formula if you like, for one of these functions. So that
we may use (reversible) equivalences (i.e., ¢ rules), we shall initially assume
specifications are deterministic and therefore only specify one function.

[As noted above, until we have introduced the notion of (operational) refinement,
we can only cope with deterministic specifications. We shall not make a big thing
out of this but merely use deterministic examples throughout and cope with non-
determinism later.]

Being deterministic, for any value of x:X which satisfies pre-f, there is only a
single value y:Y such that post- f(x,y) is True. The first, and most complicated,
stage in the synthesis is to transform the post-condition from its given form into
what we call a functional form, in which the evaluation of y is explicit; i.e., the
post-condition is expressed in the form “y = ...”, where y only appears on the left-
hand side of the “=” sign. To achieve this, we use common problem-solving
strategies (see Section 3.2). For any non-trivial calculation, this form of the
program will involve recursion and so the ‘logic to functional’ phase of the
derivation process can also be regarded as recursion introduction. As already
hinted in Chapter 1, the initial specification ought not to involve explicit recursion,
as it encourages bias towards certain designs. We wish to defer for as long as
possible any influences on the way in which the design evolves. In Chapter 5 we
shall encounter more (quantified rather than recursive) constructs which can be used
in specifications.

The final step will be to treat the (now functional) design as a function within a
procedural language 3 and, where appropriate, transform the function declaration
and its call into an iterative design. This is recursion removal . Hence
recursion is used within an intermediate form and provides a goal for the first part of
our transfinement manipulations. One of the advantages of proceeding this way is
that we avoid the need to find loop invariants 4. The transformation into iterative
form, where possible and desirable, is completely systematic, and the associated
correctness proof is implicit.

Recursion removal is not considered in detail until Chapter 4, but we shall reserve
the right to apply results from there, as the last phase of a program derivation, to
show what the final form of the program might look like.
3 We shall not use a proprietary programming language but one of our own invention, which we call
PDL, Program Design Language. This is basically a high-level block-structured language with
complex types. It was described in Chapter 2 and its ‘rules’ are summarised in Sections A.4 and A.5
of the Appendix. However, it should look sufficiently familiar so as to require little explanation as we
go along.
4 Though we still do need to find something akin to a loop variant.

Algorithm Extraction 163

In Section 3.1, we describe the kinds of intermediate recursions which are acceptable
for our needs. In Section 3.2, we tackle the more fundamental problem of
transforming the original logical specification into the ‘functional’ form. This will
be based on a formal presentation of common problem-solving strategies.

3.1 On Converging Recursion

In our “logical-functional-procedural” (LFP) program synthesis strategy, recursion
plays a very important bridging role. Ideally, we replace quantification5 by
recursion and, later, recursion by iteration.

Recall from Section 1.5 that recursions can be created by folding. The same idea
can be extended to act on certain quantified expressions (see in Chapter 5).

So if
f(x) – exp(x)

or, more properly
f – (¬x:X)(exp(x))

 where f is presumed to be total,
then, we have the rule

(¬x:X) f(x) ¢ exp(x)

so we can replace f(y) by exp(y) using unfolding, or in the reverse direction, by
folding.

We must ensure that any recursion that we create actually does converge, i.e., we
must eventually reach a non-recursive part of the specification, and we must get
there in a finite number of steps.

To formalise this requirement, consider

f:X — Y
pre-f(x) – True (say)
post-f(x,y) – y = if then g(x)

else comb(f(f1(x)), f(f2(x)), ... , f(fn(x)))

fi

Here n: and each f i ‘reduces’ x somehow, and comb combines the intermediate

results.

5 For now, just think of this as meaning the logical quantifiers ∀ and ∃ . Other forms will be
introduced in Chapter 5.

164 Constructing Correct Software

So each evaluation can be represented by a tree of the form given in Figure 3.1.

x

f1

f f f

x xx

comb

.....

.....

.....

f2 f3 fn

f

Figure 3.1

The crucial point here is that although the branches of such a tree may be of
different lengths, they are all finite. Typically, the leftmost one will be as depicted
in Figure 3.2. Other branches will involve a mix of the functions f1, f2, etc.

If X was , then we could use the ordering of insisting that fi(x) < x for

appropriate i ’s. The classical example of this is the good old factorial function
where x and y are related by

y = if x = 0 then 1 else x * f(x–1) fi

i.e., ‘f1(x)’ – x – 1 and x – 1 < x

More generally, we need to devise 6 some measure m (of type X —) so
that m(fi(x)) < m(x); i.e., fi (which is of type X — X) reduces the ‘size’ of the

problem.

We should never perform a fold using f unless we have a function such as m that
guarantees that the resulting recursion terminates.

This will then guarantee that any derived iterations, ‘while’ loops and so forth, do
not continue executing forever.

Recall how the recursions introduced in the example of Section 1.5 used ‘rest_of(L)’
as the parameter within a call embedded in the expression derived from the definition
of even_sum(L). Using the length of the list as a size measure, this clearly
converges to zero and the recursion terminates.

6 This is one of the few places where we cannot routinely apply ‘automation’.

Algorithm Extraction 165

f1

x

comb

.....

comb

comb

.....

.....

f1

f1

g

:
:

:
:

Figure 3.2

What we need to check is clear.

‘Within the development of f(x), we can only apply

(pre-f(y)) f(y) ¢ exp(y)

so as to achieve a fold and re-introduce f, if m(y) < m(x),
where m:X — is a suitable measure on X ’.

Example 3.1 To illustrate this situation, we consider the function all_same. We
make no pretence of justifying how this design has been arrived at; it is merely
given as an illustration of an unusual recursive decomposition of a problem.

Given the specification:

all_same:X*—
pre-all_same(L) – True
post-all_same(L,b) – b › (∃x:X)(∀y:X)(y in L fi x=y)

166 Constructing Correct Software

then
all_same(L) ¢ True when #L≤1
all_same(”w,z’) ¢ w = z where all the actual calculation is done

and
 post-all_same(L»M»N,b) ¢ b › (all_same(L»M) ¯ all_same(M»N))

where L,M,N:X+

In this case it follows that since #L ≥ 1, then #(M»N) < #(L»M»N), and
similarly, since #N ≥ 1, #(L»M) < #(L»M»N). Hence, using the length of the
lists as a measure, the recursion converges even though

#(L»M»N) ≠ #(L»M) + #(M»N).
❑

Example 3.2 Now assume that we do not have integer addition but only inc and
dec, which deliver a result one higher or one lower than their given integer
argument.

We can then compute add (of type Ù —) by

add(x,y) – if x = 0 then y
else add(dec(x), inc(y)) fi

But what about

if x = 0 then y
else add(inc(x), dec(y)) fi ?

The use of the inc function here causes the x value to diverge away from the exit
condition ‘x = 0’ and the calculation never terminates. We can, however, modify
the function so that its signature is Ù — and has the ‘formula’

if x = 0 then y
else if x > 0 then add(dec(x), inc(y))

else add(inc(x), dec(y))
fi

fi
This is based on the same idea but always works.

❑

Example 3.3 Now consider

tricky_1(x: ,n:) – if x ≤ 0 then 0
else tricky_1(x – 1/n, n+1) + 1 fi

This works (try some small values of x and n), but finding a suitable measure is
hard and requires that we know quite a lot about numbers. ❑

Algorithm Extraction 167

Even more problematic is:

Example 3.4 Suppose

tricky_2(x: ,n:) – if x ≤ 0 then 0
else tricky_2(x – 1/n, 2*n) + 1 fi

Can you identify the pre-condition for tricky_2?

Look what happens when we try to calculate tricky_2(3,1). We get the
progression:

tricky_2(3, 1)
¢

tricky_2(3–1, 2*1) + 1
¢

tricky_2(2, 2) + 1
¢

tricky_2(2 – 0.5, 2*2) + 1 + 1 ---see7

¢
tricky_2(1.5, 4) + 2

¢
tricky_2(1.25, 8) + 3

¢
tricky_2(1.125, 16) + 4

¢
tricky_2(1.0625, 32) + 5

etc.

With the input value pair ”3,1’, the calculation never terminates, and hence this
pair is not in the domain of tricky_2 and should be excluded by the pre-condition.

❑

The purpose of these last two examples was firstly to caution the reader against
jumping to conclusions about expressions (specifications etc.) which look similar
but behave very differently and secondly to emphasise the importance of using the
set rather than (or, worse still,). When ‘counting down’ to an exit value,
we must always move towards zero and must take big enough steps so as to
guarantee that we get there in a finite number of steps. Essentially the only way to
do this is to use and to strictly reduce the measure at each stage.

(It is also possible to allow a finite number of steps where no change is made
between the strict reduction steps. This is akin to ‘stuttering’, which will be
referred to in the sequel. We shall, wherever possible, avoid ‘nasties’ like this until
we have dealt with the central ideas in 'better behaved’ situations.)
7 The reason for using these exact decimal representations will become clear as we proceed. To
use rational numbers (fractions) here would just get out of hand, but binary fractions would be very
illuminating.

168 Constructing Correct Software

3.2 Design Tactics

Although there are new (variations on) problem-solving techniques being evolved
all the time, there are certain key strategies which characterise the vast majority of
ways in which problems are solved and, correspondingly, solutions are sought (or
programs, which solve the problems, are developed). In broad terms, we either seek
to reduce the problem to a ‘similar’ one which is somehow easier to solve or to
break the problem down into several parts, which are again easier to solve and from
the solutions to which we can derive a solution to the original problem (commonly
known as the “divide and conquer” strategy). These approaches are studied in
Sections 3.2.2 and 3.2.3, respectively, but alone they cannot solve any problem.
We need also to be able to cope with instances of problems which, because they are
too small, cannot be further reduced or split up. Often, in such situations, the
problem is so ‘small’ that the answer is ‘easily seen’ (but of course we still need to
justify that our intuition is well-founded and to show that what we believe to be an
answer actually works). We consider this scenario in Section 3.2.1. It may also be
the case that the problem is structurally similar to another one for which we already
have a solution or a partly completed design. This is the most complex situation
to describe in general terms, but we discuss the basic principle in Section 3.2.4.
And in Section 3.3 we look at some situations where we attempt to justify correct
constructions based on inspiration.

As we progress through this chapter, we shall use small excerpts from larger
problems to illustrate the different tactics. Subsequently these ideas will be
brought together to construct more substantial, and more complete, program
designs.

Before proceeding, it must be stressed that problem solving, of which program
construction is an instance, is not an automatic process. Although parts of what
we shall describe can be mechanised, you will still need to select what you believe
to be an appropriate tactic for finding the ‘solution’ of each problem. Very often a
‘standard’ tactic, or a slight variant, will work, but you will still encounter
situations that demand the creation of a new tactic or, even worse, problems which
cannot be solved in the form presented. They are just insolvable, but a closely
related problem may not be. This section merely presents a small collection of
tactics, one or more of which will bear fruit in very many cases.

To set the scene more formally, recall the form of a specification:

f:X — Y
pre-f(x) –
post-f(x,y) –

Algorithm Extraction 169

The post-condition is really only an implicit definition of y (or possibly a
collection of acceptable y’s) in terms of an x value which satisfies the pre-
condition. The move from a logical form (as in the specification) to a functional
form requires that we rearrange (the information in) the post-condition into the form

y = exp ,

where exp is an expression involving the input x (but not y) and, for interesting
programs, recursive references to f. These recursions must be such that there is
always ‘a way out’. As discussed in Section 3.1, we need to find a reduction
function (of type X — X) and an associated measure (of type X —).

Our initial specifications involve predicates, quantifiers etc. and can be quite
complex, though not as complex as some would have us believe. Keep them as
simple as possible, remove any redundancy — making them logically as weak as
possible — and anything that relates to implementation rather than the problem.
We need to be able to break the problem into smaller, more manageable, parts.
Unfortunately, what is considered to be more acceptable in a specification —
usually interpreted as ‘more easily understood’ — is unlikely to be structurally
similar to a useful design for a procedural program.

To illustrate the structural extremes, a specification of the form

... ¯ ... ¯ ... ¯ ...

where each of the terms is logically independent (or orthogonal), is likely to be
easier to understand than more general expressions, but the direct ‘coding’ of any
one of these terms might result in unbounded amounts of calculation and never
yield results. On the other hand, in a ‘straight line’ procedural program we
ultimately end up with a sequence of intermediate values, such as z where

(∃z:T) (z = g(x) ¯ y = f(z))

which might be encoded as

(result) y æ f(g(x))

or begin var z:T;
z æ g(x);
y æ f(z)

end

170 Constructing Correct Software

or
begin var z:T;

read x;
G(x,z);
F(z,y);
write y

end
depending on the language used.

However, as noted in Chapter 2, the direct search for z (and f and g) is usually quite
difficult. It proves much easier to take a different approach in which suitable states
and functions ‘come out in the wash’. This is one of the situations in which we
may be able to apply a ‘eureka’ process, but that must wait until Section 3.3.

Our program constructions may be regarded as constructive proofs (that the derived
program is ‘correct’). Logically they are equivalent to verification proofs, but they
usually differ in the effort required and in their productivity. Often, performing a
construction is easier than a retrospective verification proof (which, of course,
might fail), but there are exceptions. If we really do know the answer or we are
very confident that we know a possible answer, then, in simple cases, it may be
easier to demonstrate that this answer does indeed work rather than try to re-derive it
from the specification. We are not advocating full-blown complex proofs, but only
the kind of proof which can be discharged by the direct (and simple and relatively
short) evaluation of a Boolean expression.

Now let us look at the details. We shall concentrate on a small collection of data-
driven tactics that are derived directly from well-known approaches to problem
solving and are often used in combination. Here they are first described in isolation
and in very general terms, and they will then be illustrated by simple examples.

(Note that the names associated with the various tactics are not standard but are
indicative of their underlying motivation.)

Algorithm Extraction 171

3.2.1 Checking Perceived Answers

Take the generic case of

spec-f : (X Ù Y) – [pre-f, post-f]

Suppose that for a given input value v:X (such that pre-f(v) ¢ True, so v is a valid
input) and we believe that z:Y8 is an acceptable answer for f(v)9.

If z works as an answer for f(v), then post-f(v,z) must be True, and that is exactly
what we have to show (indeed it is the only thing we have to show). In practice,
we back substitute the solution into the problem (here the specification) and
evaluate post-f(v,z).

Providing that this evaluation gives the result True, then we may write

”v,z’ ˜ { ”x,y’:X Ù Y | post-f(x,y) }

Moreover, since pre-f(v) is True,

”v,z’ ˜ { ”x,y’:X Ù Y | pre-f(x) post-f(x,y) }
i.e.,

”v,z’ ˜ spec-f.

We can then partially define an implementation of the specification by requiring
that

f(v) – z.

Of course, if v was perfectly general so we could extend this to all input values in
the domain of spec-f, we would have found the whole of f and could write

spec-f ∞ { ”v,z’:X Ù Y | z = f(v) }

This means that {”v,z’:X Ù Y | z = f(v)} is a (correct) refinement of spec-f. And
notice that {”v,z’:X Ù Y | z = f(v)} could be written {”v, f(v)’:X Ù Y} or
{v Ÿ f(v):X — Y}; it is merely the graph of (a particular implementation of) the
function f. However, it is unlikely that we could treat the whole of the domain (all
valid inputs) in one fell swoop.

8 More generally, z can be any expression — such as ‘exp’ — in which v may be a parameter and
which gives a result of type Y.
9 Notice that although f, an implementation of spec-f, is deterministic (so that for a given f and a valid
x, f(x) is unique), it may not be the case that f is the only implementation of spec- f. Therefore, to use
the notation spec-f ¢ f (or even the more technically correct form spec-f ¢ graph(f), where the
graph of f is the relation consisting of all the maplets of the form x Ÿ f(x)) would be inappropriate.
Because there may be loss of information, we write spec- f ∞ graph(f) and say that graph(f) is an
operational refinement of spec-f. Operational refinement is an operation between binary relations
and is more properly addressed in Chapter 6; here we merely need to explain why we use the
notation. Notice also that graph(f:X — Y) – {”x,y’:XÙY | y = f(x) }.

172 Constructing Correct Software

More commonly, we would treat those values of v satisfying some extra condition
(cond, say) and claim only that

(cond)10 spec-f ∞ {v Ÿ f(v):X — Y}

This would only work when cond holds. In Section 3.2.3.4, we shall see how to
partition the domain so that all relevant cases are covered.

All that may sound overly complicated. The processing isn’t but the description
probably is. Let’s look at what it means in practice.

Example 3.5 Take the specification

Listmax: *—
pre-Listmax(L) – #L ≠ 0
post-Listmax(L,m) – m in L ¯ (∀z:)(z in L fi z ≤ m)

Recall that if Listmax is an implementation (which will be deterministic) of the
specification and m denotes the output, then we can write m = Listmax(L).

Suppose that (following consideration of how we might solve the overall problem)
we have decided that the length of L is a suitable measure of the size of the problem
(technically, if the recursion is to exit when the measure equals zero then we need
#L – 1, but to worry about that here as it would be an unwelcome distraction).

Consider the case when #L = 1; i.e., L ¢ ”x’ for some x: .
Here

pre-Listmax(L) ¢ 1 ≠ 0
¢ True

so, of course, the data is valid.

First, for comparison, let us see how we might actually calculate the answer from
the specification. Remember, we are assuming that #L = 1.

1 0 We ought to explain more fully how this conditional refinement should be interpreted. We shall
ultimately wish to filter such conditions through conditional expressions, therefore we need only
explain the interpretation when the condition holds. Clearly, on the right-hand side we should have
{v Ÿ f(v):X — Y | cond(v)}. What to do on the left-hand side is not so obvious since v does not
appear, even implicitly: however, the restriction must be consistent with that on the right-hand side
and so the conditional expansion of spec-f should be

{ ”x,y’:X Ù Y | cond(x) pre-f(x) post-f(x,y) }.
In other words, we intersect both sides with the set {”x,y’:X Ù Y | cond(x)}. This simply imposes the
constraint on the input (X) values.

Algorithm Extraction 173

post-Listmax(L,m)
¢

post-Listmax(L,m) ¯ True
¢

post-Listmax(L,m) ¯ (#L = 1)
¢

post-Listmax(L,m) ¯ (∃x:)(L = ”x’)
¢

(∃x:)(post-Listmax(L,m) ¯ (L = ”x’))
¢

(∃x:)(m in L ¯ (∀z:)(z in L fi z ≤ m) ¯ (L = ”x’))
¢

(∃x:)(m in ”x’ ¯ (∀z:)(z in ”x’ fi z ≤ m) ¯ (L = ”x’))
¢

(∃x:)(m = x ¯ (∀z:)(z in ”x’ fi z ≤ m) ¯ (L = ”x’))
¢

(∃x:)(m = x ¯ (∀z:)(z in ”m’ fi z ≤ m) ¯ (L = ”x’))
¢

(∃x:)(m = x ¯ (∀z:)(z = m fi z ≤ m) ¯ (L = ”x’))
¢

(∃x:)(m = x ¯ True ¯ (L = ”x’))
¢

(∃x:)(m = m ¯ (L = ”m’))
¢

(∃x:)(True ¯ (L = ”m’))
¢

(∃x:)(L = ”m’)
¢

L = ”m’
¢

m = first_of(L) ¯ ”’ = rest_of(L)
¢

m = first_of(L) ¯ 0 = #rest_of(L)
¢

m = first_of(L) ¯ 1 = #L
¢

m = first_of(L) ¯ True
¢

m = first_of(L)

i.e., (#L =1) Listmax(L) ¢ first_of(L)

so (#L =1) post-Listmax(L,first_of(L)) ¢ True

174 Constructing Correct Software

That’s how to work out the answer. [Study this derivation and identify exactly
what is being done at each stage and why it is being done.] Now, instead of going
through the calculation, which often will be more involved than in this example,
we merely have to check that the ‘apparently obvious’ answer does in fact work.

To do this, we evaluate

post-Listmax(”x’,x)
¢ (we already know that pre-Listmax(”x’) ¢ True)

x in ”x’ ¯ (∀z:)(z in ”x’ fi z ≤ x)
¢

x = x ¯ (∀z:)(z = x fi z ≤ x)
¢

True ¯ (∀z:)(True)
¢

True

Here we use essentially the same basic reasoning, but the manipulation is shorter
and easier (since we don’t have to find the answer).

We have therefore concluded that

(#L =1) spec-Listmax ∞ {L Ÿ first_of(L): *— }

This can then be used within the construction

m = if #L = 1 then first_of(L)
else ... fi

but more of that later.
❑

Put simply, if we believe that we know an ‘answer’, we just plug it into the post-
condition and evaluate. If the evaluation yields True, then we have a valid
(conditional) refinement and can proceed to the next part of the construction. But
remember that our answer might not be the only one, so what we have here is
potentially a refinement rather than a reversible transformation.

3.2.2 Problem Reduction

As hinted at in the previous example, within the initial analysis of a problem to be
solved (or of a calculation to be performed), we must consider the notion of ‘size’.
In general terms, we can only be rather vague about what constitutes the size of a
problem or even the size of a piece of data. Typical measures of size which might
be useful in certain situations are the length of a list, the size of a finite set or bag,

Algorithm Extraction 175

or even the magnitude (value) of a positive number 11. Of course, the measure of
problem size must be directly related to the problem being solved, and hence a
numerical characterisation of ‘unsortedness’ and ‘being more sorted’ (to be used
within a sorting algorithm) might be more indicative of the kind of measure, and
associated reduction function, which must be sought.

Technically, the data (input) value supplied to a function can always be regarded as a
single entity, even if it is a list or set or whatever. With this in mind, problem
reduction can be simply expressed as “given a suitably ‘large’ data item, create a
‘smaller’ data value for which the program should give the same answer”. Of
course, this all hinges on the notion of size, which is problem-specific.

Problem reduction is rarely used directly but occurs in some way in the derivation
of virtually all iterative programs. This is hardly surprising since problem
reduction leads straight to tail recursion, which, in its pure form, is not commonly
found. As you will see in Chapter 4, it can get quite involved.

This is the first instance of recursion introduction and is based on the relationship

f(x) = f(reduce(x))

Of course, this would never terminate/converge, but the following conditional
expression incorporates the same concept.

f(x) ¢ if ...
then ...
else f(reduce(x))
fi

With a suitable measure function, then all we require is that

measure(reduce(x)) < measure(x).

So, we solve/compute f(x) by finding f(y), where y is a reduced problem obtained
from x.

Example 3.6
Again we use the Listmax function. The insight behind the reduction here is
simply that if we have the list L, which includes at least two elements x and y,
then we can throw away the smaller of these and then find Listmax of the list which
remains.

1 1 This need not be from the set . It could be a real number, but in this case the associated
reduction function must ‘change’ the value in such a way as to guarantee that the exit value (usually
zero) is reached in a finite number of steps.

176 Constructing Correct Software

In the general situation the list L has the form A»”x’»B»”y’»C and, depending
on whether x ≤ y or not, we replace this list with either A»B»”y’»C or
A»”x’»B»C. But the x and y values can be chosen in many different ways; and
this introduces algorithmic non-determinism. To avoid this perfectly valid12 but
distracting situation, we select a particular pair of x,y values within L.

Specifically, we shall view L as ”x,y’»C, i.e., we name the first two elements.
Let’s plug this expression into the post-condition and see what happens.

If m is an acceptable result for Listmax(L), then

post-Listmax(”x,y’»C,m)
¢

m in (”x,y’»C) ¯ (∀z:)(z in (”x,y’»C) fi z ≤ m)
¢

((m = x) ˘ (m = y) ˘ m in C) ¯ (∀z:)(z in (”x,y’»C) fi z ≤ m)
¢

((m = x) ˘ (m = y) ˘ m in C) ¯
((x ≤ m) ¯ (y ≤ m) ¯ (∀z:)(z in C fi z ≤ m))

¢
True

For the sake of argument, let us now assume that x ≤ y. (Of course, in the fullness
of time we must also consider the case when x > y. Constructions will be
introduced so that we cannot forget such possibilities.) The intuition is that
Listmax(”y’»C) is the same as Listmax(”x,y’»C). Then we would be able to
write

Listmax(”x,y’»C) ¢ if x ≤ y then Listmax(”y’»C)
else ... fi

Let us see what we get from Listmax(”y’»C) and then see how it relates to the
original problem. If Listmax(”y’»C) = n, then

post-Listmax(”y’»C,n)
¢

n in (”y’»C) ¯ (∀z:)(z in (”y’»C) fi z ≤ n)
¢

((n = y) ˘ n in C) ¯ (∀z:)(z in (”y’»C) fi z ≤ n)

1 2 Taking such a general view is the desired way to proceed. The choice of exactly which selection
to make from the set of alternatives then constitutes a further design decision, and such decisions
should ideally be delayed for as long as possible.

Algorithm Extraction 177

¢
((n = y) ˘ n in C) ¯ (y ≤ n) ¯ (∀z:)(z in C fi z ≤ n)

¢
True

What is the connection between m and n? We want them to be equal. Instead of
deriving an expression for each and checking to see whether they are equal, we can
check for compatibility in a single step.

Still working with the assumption that x ≤ y, we need to evaluate

post-Listmax(”x,y’»C , Listmax(”y’»C))

or, put another way, evaluate

post-Listmax(”x,y’»C , n) where post-Listmax(”y’»C , n).

So, using ((n = y) ˘ n in C) ¯ (y ≤ n) ¯ (∀z:)(z in C fi z ≤ n) ¢ True;

i.e., ((n = y) ˘ n in C) ¢ True,
(y ≤ n) ¢ True

and (∀z:)(z in C fi z ≤ n) ¢ True and x ≤ y ¢ True

we evaluate
post-Listmax(”x,y’»C ,n).

Here goes:
post-Listmax(”x,y’»C ,n)

¢
n in (”x,y’»C) ¯ (∀z:)(z in (”x,y’»C) fi z ≤ n)

¢
((n = x) ˘ (n = y) ˘ n in C) ¯ (∀z:)(z in (”x,y’»C) fi z ≤ n)

¢
((n = x) ˘ (n = y) ˘ n in C) ¯

((x ≤ n) ¯ (y ≤ n) ¯ (∀z:)(z in C fi z ≤ n))
¢

((n = x) ˘ True) ¯ ((x ≤ n) ¯ (y ≤ n) ¯ (∀z:)(z in C fi z ≤ n))
¢

True ¯ ((x ≤ n) ¯ (y ≤ n) ¯ (∀z:)(z in C fi z ≤ n))
¢

(x ≤ n) ¯ (y ≤ n) ¯ (∀z:)(z in C fi z ≤ n)
¢

(x ≤ n) ¯ (y ≤ n) ¯ True
¢

(x ≤ n) ¯ (y ≤ n)

178 Constructing Correct Software

¢
(x ≤ n) ¯ True ¯ (y ≤ n)

¢
(x ≤ n) ¯ (x ≤ y) ¯ (y ≤ n)

¢ (x ≤ y) ¯ (y ≤ n) fi (x ≤ n)
and using the rule (A fi B) A ¯ B ¢ A

(x ≤ y) ¯ (y ≤ n)
¢

True ¯ True
¢

True13

So post-Listmax(”x,y’»C , Listmax(”y’»C)) ¢ True

and we can write14

post-Listmax(”x,y’»C ,m)
∞

m = if x ≤ y then Listmax(”y’»C)
else ... fi

By a similar — but subtly different — piece of calculation, we can obtain

post-Listmax(”x,y’»C ,m)
∞

m = if x ≤ y then ...
else Listmax(”x’»C) fi

Putting these together, we have

post-Listmax(”x,y’»C ,m)
∞

m = if x ≤ y then Listmax(”y’»C)
else Listmax(”x’»C) fi

and then
post-Listmax(”x,y’»C ,m)

∞
m = Listmax(”if x ≤ y then y else x fi’»C)

1 3 Again, check that you understand this derivation. Identify the difference between consecutive
expressions, confirm that they are equivalent and that you understand why the transformation was
performed.
1 4 We use ‘∞’ rather than ‘¢ ’ because an implementation ‘Listmax(”y’»C)’ is used and
implementations are generally refinements of specifications. Valid alternatives may have been
discarded and hence the step might not be reversible. This is discussed more fully in later Chapter 6.

Algorithm Extraction 179

To place this result back into the general form quoted at the beginning of this
section

post-Listmax(L, m)
∞

m = (if #L < 2 then ...
else Listmax(”if x ≤ y then y else x fi’»C) fi)

where L = ”x,y’»C

[Notice that
Listmax(”if x < y then y else x fi’»C)

 where L = ”x,y’»C
can be written as

Listmax(” if first_of(L) ≤ first_of(rest_of(L))
then first_of(rest_of(L))
else first_of(L) fi ’ »rest_of(rest_of(L)))

To say the least, this is rather messy. A neater alternative is

Listmax(reduce(L)),
where

reduce(”x,y’»C) – ”if x ≤ y then y else x fi’»C.]

Just to remind the reader of our objective, we can take the working from the
previous example and incorporate the current working to give

m = (if #L < 2 then first_of(L)
else Listmax(reduce(L)) fi)

from which we get two function declarations and a function call:

Listmax(L) – (if #L < 2 then first_of(L)
else Listmax(reduce(L)) fi);

reduce(”x,y’»C) – ”if x ≤ y then y else x fi’»C;
Listmax(L)

The last line could also be written as

m = Listmax(L),

to indicate the link between the calculated value and the name m used in the
specification, or as

m æ Listmax(L)

to explicitly indicate the delivery of the value to m . We shall use the third
alternative, as it conveniently bridges the move from the functional form — the
pure function call — to the procedural assignment statement.

180 Constructing Correct Software

Removing the recursion by means of the standard transformation (see Chapter 4),
we can replace m æ Listmax(L)

by:
begin var v: *;

v æ L;
while #v ≥ 2

do v æ reduce(v)
od;

m æ first_of(v)
end

❑

Again we have used checking, but here we have more structure to play with and we
achieve a more computationally useful result. The amount of work involved here
is untypically large. Taking a less direct approach, and showing that the function
max is associative,

so max(a,max(b,c)) = max(max(a,b),c)
would allow us to

derive a similar design with less work. But we cannot yet justify such a step.

Exercises

3.1 Following the lead given above, deduce the following:

post-Listmax(”x,y’»C , m)
∞

m = if x ≤ y then ...
else Listmax(”x’»C) fi

❑

Algorithm Extraction 181

3.2.3 Problem Decomposition

When confronted with problems involving a ‘small’ amount of data (by which we
mean capable of being ‘seen’ as a whole or fully comprehended as a “head full of
information”)15, there is an understandable desire to dive straight in, to get on with
the job in hand and not to spend time organising how to proceed. This is not
unreasonable since the task is perceived as being so simple as not to require such
things.

Although extra considerations, such as how to store and access the data, need
eventually to be taken into account, it is often fruitful from the very outset to
assume that the program is going to be used with huge inputs, so that a degree of
organisation is essential. Such approaches are akin to using multiple resources
(parallel computers or even a team of human helpers). Indeed, for machine
processing of data, organisation is arguably more important than the actual (atomic)
calculations, which are often trivial in comparison.

As noted in the previous section, pure problem reduction is rarely applicable to an
initial specification; we therefore seek ways in which the given problem can be
broken down (rather than reduced) into smaller (easier?) problems, the solutions of
which lead us to a solution of the given problem.

What constitutes a smaller, or ‘easier’, problem depends not only on the problem
but also on how we are attempting to solve it. It should therefore be expected that
very many problems (genuinely different - dissimilar - problems) will best be
solved by variants of general methods rather than by straightforward ‘handle
turning’. Consequently, it is also reasonable to expect that general techniques on
their own will yield solution schemes which are correct (and proved to be correct)
but perhaps not optimal. But optimality depends on properties over which the
software designer may have no control, such as the speed of certain operations on a
particular machine, and is secondary to correctness. It may be possible to improve
the efficiency of a correct program; there is no point in doing anything with a
program which is not known to be correct.

Essentially the tactics given below range from using the (pure) structure of the data
to using the atomic data values and disregarding the structure in which they are held,
or include a mix of both, or use selected properties of data (viewed as a single
entity) to divide up the problem domain. We shall describe these tactics in terms of
the main composite types defined earlier but focus mainly on lists. They not only
form the basis from which all internal data types are constructed in modern

1 5 The analogy which we are attempting to draw out here is similar to that which advocates that any
flowchart should fit onto a single piece of A4 paper and yet use notations and descriptions which can
be easily read. There is a certain limiting amount of information, which is almost impossible to
quantify and is very subjective, that can be easily understood and mentally ‘processed’ without the
use of any aids.

182 Constructing Correct Software

programming languages, they are also the way in which sets and bags are
represented within computer systems.

In general, what we are searching for is a pair of functions, which we shall
generically call split and combine (but these names will also be used in specific
examples, and other locally appropriate names will also be used so beware), so that
we can:

replace (refine) f(A) by combine(f(B), f(C)) where ”B, C’ = split(A).

This can be denoted by

(”B, C’ = split(A)) f(A) ∞ combine(f(B), f(C))

A dataflow16 diagram (Figure 3.3) will more clearly show what we are trying to do.
This basic diagram will occur with almost monotonous regularity from now on. It
is therefore very important that you see exactly what is going on.

A

B C

f f

combine

b c

f
split

a

Figure 3.3

We want to split the input A into B and C, so that f can be performed on values B
and C independently to yield answers b and c. These are then combined to give a,
which is a valid answer for the original calculation, namely f(A).

1 6 Despite a degree of similarity with the ‘if then else fi’ flowcharts in Chapter 2, remember that this
is a dataflow diagram. Data flows down both branches.

Algorithm Extraction 183

Forgetting for the moment about the details of the split / combine part of the
scheme, if f is to be a valid implementation of spec-f applied to A, we require that

pre-f(A) ¢ True
and

post-f(A, a) ¢ True
 i.e., that the data A is valid and the answer a works.

So, if the connections within the outer ‘ f box’ in the diagram are to provide a
correct replacement for f(A), the following inter-relationships must hold. (Check
that you understand how they relate to the lines and boxes in Figure 3.3.)

(A is large enough) pre-f(A) ¿ pre-split(A) (1)

so that splitting A is legal and desirable,

(split(A) = ”B,C’) ¿ (pre-f(B) ¯ pre-f(C)) (2)

so that the evaluations of f(B) and f(C) are legal,

post-f(B,b) ¢ True and post-f(C,c) ¢ True (3)

so the two sub-calculations give the valid results b and c,

pre-combine(”b,c’) ¢ True (4)

so combineing b and c is legal,

post-combine(”b,c’,a) ¢ True (5)

and gives the valid answer a, and

post-f(A, a) ¢ True (6)

which is also a valid answer for f(A).

In total, given a value A for which pre- f(A) is True and A is ‘large enough’ to
require splitting, if these six conditions hold, combine(f(B), f(C)) is a correct
replacement for f(A). We write this as

f(A) ∞ combine(f(B), f(C))

namely f(A) is refined to combine(f(B), f(C)).

or f(A) can be implemented by combine(f(B), f(C)).

184 Constructing Correct Software

But this looks like hard work, we have six properties to check. Fortunately, some
or all of these will often involve little or no work. What we seek is to reduce the
overall task by looking for special ways of splitting data so that the conditions
always hold and combine is easy to specify or define. Indeed, it may even be the
case that the main check can simply be performed by evaluating

post-f(A, combine(f(B), f(C))) with suitable substitutions.

There are other approaches to dealing with this situation. We could ‘guess’ the
split and combine components and then try to show that they fit into the scheme.
Alternatively, we could invent a split and then try to calculate a combine function
that fits the conditions; this is more in keeping with our desire to calculate all but
the most obvious details (which we simply check). Of course, for a bad choice of a
splitting function, it may not be possible to find any combine function. In such a
situation, it might be possible to find a suitable scheme for a different, but closely
related, specification and then devise code to link the two. We address this
possibility in Chapter 10. Alternatively, if we can reformulate the specification to
use certain kinds of functions, such as quantifiers, then ‘divide and conquer’ schemes
can be obtained in a single step. This scenario is investigated further in Chapter 5,
but here we intentionally develop constructions from first principles.

3.2.3.1 Structural Splitting

Arguably this is the most important technical instance of problem decomposition,
and consequently we devote a considerable amount of time to it. Structural
splitting amounts to dividing a suitably large data item into two or more smaller
parts without reference to individual items within the input. As always, an
appropriate measure of size needs to be found so as to give some meaning to ‘large’
and ‘smaller’ but, using the length of lists and the size of (i.e., the number of
elements in) a finite set or bag, we can illustrate the general intent.

Suppose that the input to function f:X* — Y is L:X* and we decide to decompose
it into sub-lists M:X* and N:X*, where L ¢ M»N. In order to make progress in
solving the problem, we must have that #M < #L and that #N < #L, and,
since #L ¢ #M + #N, this means that #N ≥ 1 and #M ≥ 1. This is a requirement
for making progress even if ”’ is a valid input for the function being computed.

To indicate how the components of the sought-after design fit together, we refer to
the usual dataflow diagram appropriately annotated (Figure 3.4).

Notice that since f has type X* — Y, it follows that

split has type X* — X* Ù X*
and combine is of type Y Ù Y — Y.

Algorithm Extraction 185

Typically we will be considering situations where pre-f(L) is defined either to be
‘True’ or ‘#L > 0’. What then can be said about the functions split and combine?

M»N

M N

f f

combine

m n

f
split

a

Figure 3.4

(1) We already know from the discussion above that #M ≥ 1 and #N ≥ 1, so it
would be reasonable to include ‘#L ≥ 2’ within pre-split, indeed this is often the
condition under which splitting is required.

So defining
pre-split(L) – #L ≥ 2 ¯ pre-f(L),

we have

(#L ≥ 2) pre-f(L) ¿ pre-split(L)
¢

pre-f(L) ¿ (#L ≥ 2 ¯ pre-f(L))
¢

pre-f(L) ¿ (True ¯ pre-f(L))
¢

pre-f(L) ¿ pre-f(L)
¢

True

Therefore condition (1) is valid by construction.

186 Constructing Correct Software

(2) Now we need to formulate post-split. Again, from the preceding discussion we
already have the requirement

post-split(L,”M,N’) ¿ #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N

This has all the essentials that we require of a split function specification.
However, it does not specify a unique function but a set of functions, and hence it
introduces non-determinism. Clearly, given M and N, M»N represents a unique
value, but the reverse is not always True. Notice that

” 1, 2, 3 ’ ¢ ”1, 2’ » ”3’
¢ ”1’ » ”2, 3’

so, if M»N = ” 1, 2, 3 ’ , M and N are not uniquely determined.

To make split deterministic we must add extra constraints to ensure that the ‘break
point’ (between M and N) is well-defined. Three commonly used possibilities are

(i) #M = 1 (which suggests serial right-to-left processing)

(ii) #N = 1 (left-to-right processing)

(iii) (#M = #N) ˘ (#M = #N + 1)
(which supports equi-parallel processing).

We shall assume that some choice has been made in order that split is deterministic
(idealy such a choice be deferred, but we want to avoid non-determinism), but we
shall only use the essential information; i.e., we work with

post-split(L,”M,N’) – #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N

and with this condition (2) holds trivially if pre- f – (¬L:X*)(True) and almost
trivially if pre-f – (¬L:X*)(#L ≥ 1).

Condition (3) is where induction on the length or size of the data value is hidden
away. Recall that #M < #L and #N < #L, the data values input to the two sub-
calculations, are strictly smaller than that submitted to the overall calculation. Put
another way, we are assuming that f(M) and f(N) can be correctly calculated and we
are attempting to use them to build a correct answer for f(L) to define a correct
implementation for f when applied to (the bigger input value) L . The upshot is
that, we do not need to check condition (3); we can legitimately assume that it
holds. If it does not, then the fault lies within the construction that handles smaller
input values and is not our immediate concern.

Algorithm Extraction 187

Now, for condition (4), this checks that the results produced by the two sub-
calculations can be combined. Clearly, this should (logically) contain

(∃M,N:X*)(m = f(M) ¯ n = f(N))

indeed, since the inputs to the sub-calculations must be non-void, we could define

pre-combine(m,n) – (∃M,N:X+)(m = f(M) ¯ n = f(N))

Notice that M and N are non-empty.

In many situations, there is no actual constraint on inputs to combine; any value of
type Y is a valid result for some input to f, and then we must have

pre-combine(m,n) – True

Often it is convenient to use ‘True’ even if not strictly necessary, but then we run
the risk of having to devise an implementation for combine, part of which will
never be used; but this is often done. Provided that no ‘special cases’ have to be
considered when designing code to implement combine, this is no real penalty.

Finally, conditions (5) and (6) together link the answer given by combine to that
required by the specification of f and which will work for f(L). The processing
carried out by the scheme in Figure 3.4 and using four functions (i.e.,
implementations of the specifications) should give a valid answer for f(L), but it
may not be the only answer allowed by the specification; therefore, instead of
equivalence, there is a weaker logical connection, namely

post-combine(”f(M), f(N)’, a) ¿ post-f(M»N,a)

If a is a valid answer from the split / f / f / combine scheme, then it is also valid for
the overall evaluation.

This can also be checked by evaluating

post-f(M»N,a) where post-combine(”m, n’,a)
where post-f(M,m) and post-f(N,n)

This is the pivotal step in showing that the scheme works — if it does.

Remember that what we would like to do, and are attempting to do, is to replace
f(N»M) by combine(f(N),f(M)). This amounts to defining f(L) in terms of f(M)
and f(N) and requires that we show

combine(f(N), f(M)) is a correct result for f(N»M)

188 Constructing Correct Software

If this works, we can write

f(L) ∞ combine(f(N), f(M)) where ”N,M’ = split(L).

The construction of the split function is straightforward, as is pre-combine, but
there is no guarantee that the result delivered by combine will work for f(L). So
the construction of combine is the focus of this tactic. We give three examples.
The first uses checking, the second addresses the same function but uses
calculation, and the third illustrates a situation for which the tactic fails.

Example 3.7
Again we use the Listmax function.

Listmax: *—
pre-Listmax(L) – #L ≥ 1
post-Listmax(L,x) – x in L ¯ (∀z:)(z in L fi z ≤ x)

If #L ≥ 2, then suppose we split L into M and N where #M ≥ 1, #N ≥ 1,
and L = M»N, and then calculate m = Listmax(M) and n = Listmax(N). It would
then seem feasible that the maximum of m and n would give x.

Now we formalise this and identify exactly what has to be checked.

split: * — * Ù *

pre-split(L) – #L ≥ 2
post-split(L,”M,N’) – #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N

[¯ ((#M = #N) ˘ (#M = #N + 1))]

— the last clause is included so as to avoid non-determinism.

combine: Ù —
pre-combine(”m,n’) – True
post-combine(”m,n’,x) – x = max(m,n)

where max(m: ,n:) – if m > n then m else n fi

By construction, the following hold:

(#L ≥ 2) pre-Listmax(L) ¿ pre-split(L) (1)

(split(L) = ”M,N’) ¿ pre-Listmax(M) ¯ pre-Listmax(N) (2)

post-Listmax(M,m) ¢ True and post-Listmax(N,n) ¢ True (3)

Algorithm Extraction 189

pre-combine(”m,n’) ¢ True (4)

post-combine(”m,n’,x) ¢ True (5)

These claims are quickly verified, but you should go through the details for
yourself.

Now comes the crunch. Does it all fit? We plug the assumptions that follow from
the working above and evaluate. We shall try to substitute ‘backwards’ from x, m ,
n, etc.

post-Listmax(L, x)
where post-combine(”m,n’,x) ¢ True

post-Listmax(M,m) ¢ True
post-Listmax(N,n) ¢ True
split(L) ¢ ”M,N’ and
(#L ≥ 2)

¢
x in L ¯ (∀z:)(z in L fi z ≤ x)

¢
max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n))

Next consider the two possibilities either (m > n) or (m ≤ n).

Since (m > n ˘ m ≤ n) ¢ True, we could introduce this clause and then proceed
with

if m > n then max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n))
else max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n)) fi

This is equivalent to continuing first with the assumption that m > n and then with
m ≤ n and then combining the results. How best to do this is largely a matter of
preference or of how a CASE tool is prepared to assist you. We shall proceed with
the extra assumption m > n and leave the other case as an exercise.

max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n))
¢

m in L ¯ (∀z:)(z in L fi z ≤ m)
¢

m in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ m)
¢

(m in M ˘ m in N) ¯ (∀z:)(z in (M»N) fi z ≤ m)
¢

190 Constructing Correct Software

(True ˘ m in N) ¯ (∀z:)(z in (M»N) fi z ≤ m)
¢

True ¯ (∀z:)(z in (M»N) fi z ≤ m)
¢

(∀z:)(z in (M»N) fi z ≤ m)
¢

(∀z:)(z in M fi z ≤ m) ¯ (∀z:)(z in N fi z ≤ m)
¢

True ¯ (∀z:)(z in N fi z ≤ m)
¢

(∀z:)(z in N fi z ≤ m)
¢

True ¯ (∀z:)(z in N fi z ≤ m)
¢

(∀z:)(z in N fi z ≤ n) ¯ (n < m) ¯ (∀z:)(z in N fi z ≤ m)

¢ since ((∀z:)(z in N fi z ≤ n) ¯ (n < m)) fi (∀z:)(z in N fi z ≤ m)

(∀z:)(z in N fi z ≤ n) ¯ (n < m)
¢

True

So,
max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n))

¢
if m > n then max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n))

else max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n)) fi
¢

if m > n then True
else max(m,n) in L ¯ (∀z:)(z in L fi z ≤ max(m,n)) fi

and, when you have done the other part,

¢
if m > n then True

else True fi
¢

True

Algorithm Extraction 191

Thus, the proposed scheme does work and, subject to L being long enough, we can
use the replacement

Listmax(L) ∞ max(Listmax(M),Listmax(N))
 where: split(L) = ”M,N’

As before, this can be slotted into a higher-level construction to give

Listmax(L) ∞ if #L ≥ 2 then max(Listmax(M),Listmax(N))
where: ”M,N’ = split(L)

else first_of(L) fi
❑

The transformation sequence given above (used to carry out an evaluation and thus
perform a check) looks like a lot of work. It is equivalent to a verification proof
and hence obviates the need to test that the scheme works for all valid data.
Moreover, compared with how a piece of everyday school algebra would look if we
included all the details, it is not really very long. Indeed, if you had a
mathematically aware editor, then each line could be obtained from its predecessor
by selecting (highlighting) an appropriate sub-expression, choosing a rule and
hitting the ‘apply’ button. Having said that, the main aim from here on is to seek
ways of cutting down the effort required by developing ‘bigger’ rules. These would
make the transfinement sequences shorter but, at the same time, reduce the ability
to exercise control over the fine details that influence the characteristics of the final
design.

Example 3.8
Now, again by way of comparison, we shall outline how we can derive (calculate?)
the combine component of the previous scheme. We start in the same way from
the specifications of Listmax and split.

Listmax: *—
pre-Listmax(L) – #L ≥ 1
post-Listmax(L,x) – x in L ¯ (∀z:)(z in L fi z ≤ x)

split: * — * Ù *

pre-split(L) – #L ≥ 2
post-split(L,”M,N’) – #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N

[¯ ((#M = #N) ˘ (#M = #N + 1))]

 — but we shall again ignore the last clause.

192 Constructing Correct Software

Now we need to find (the specification of) a combine function. Let us take the
following as a starting point:

combine: Ù —
pre-combine(”m,n’) – True
post-combine(”m,n’,x) – ?

And additionally, we assume #L ≥ 2.

Starting with post-Listmax(L,x) we try to manipulate this expression into a form
that has local (existentially quantified) values M, N, m and n and in which the only
inter-relationships between them correspond to the evaluation of split (linking L, M
and N), of the two instances of Listmax (linking M with m and N with n), and of
combine (m, n and x). To do this we can call upon the assumptions made about L ,
about the correct implementations of split and Listmax (acting on M and N) and
that these implementations are guaranteed to deliver results from valid data values.

In transforming the expressions, we may introduce or remove any terms which can
be derived from other terms. Predictably, these will often involve implication and
use the rule

(A fi B) A ¯ B ¢ A

You may have thought that the previous example was long, but this is longer17. So
we shall only give selected intermediate forms (and leave the filling in of details as
a very useful exercise in manipulation) and concentrate on explaining how the
transformation sequence is developed.

post-Listmax(L,x)
¢

x in L ¯ (∀z:)(z in L fi z ≤ x)

Now, by assumption, #L ≥ 2 ¢ True, so

¢
x in L ¯ (∀z:)(z in L fi z ≤ x) ¯ #L ≥ 2

¢
x in L ¯ (∀z:)(z in L fi z ≤ x) ¯ pre-split(L)

and if we can perform split on L, then there must be answers since

pre-split(L) fi (∃M,N: *)(post-split(L,”M,N’))

1 7 Typically we have a lot of steps, each of which makes some small change within the expression.
With a suitable software engineering tool, each of these would be similar to a simple edit.

Algorithm Extraction 193

¢
x in L ¯ (∀z:)(z in L fi z ≤ x)

¯ pre-split(L) ¯ (∃M,N: *)(post-split(L,”M,N’))

The pre- and post-conditions together give the overall specification of split and can
eventually be refined to (‘replaced’ by) its implementation, but for now we need to
use clauses within post-split to process the rest of the expression.

¢
(∃M,N: *) (x in L ¯ (∀z:)(z in L fi z ≤ x)

¯ pre-split(L) ¯ post-split(L,”M,N’))
¢

(∃M,N: *) (x in L ¯ (∀z:)(z in L fi z ≤ x)
¯ pre-split(L) ¯ #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N)

Notice that we have a conjunction of six terms and we can use any to rationalise the
others. We use L ¢ M»N to remove all instances of L except those occurring in
the specification of split. (We must retain the link with the input, L.)

¢
(∃M,N: *) (x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)

¯ pre-split(L) ¯ #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N)
similarly,

¢
(∃M,N: *) (x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)

¯ pre-split(L) ¯ #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N
¯ #M ≥ 1 ¯ #N ≥ 1)

¢
(∃M,N: *) (x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)

¯ pre-split(L) ¯ #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N
¯ pre-Listmax(M) ¯ pre-Listmax(N))

¢
(∃M,N: *) (x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)

¯ pre-split(L) ¯ #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N
¯ pre-Listmax(M) ¯ (∃m:)(post-Listmax(M,m))
¯ pre-Listmax(N) ¯ (∃n:)(post-Listmax(N,n)))

¢
(∃M,N: *,m,n:)

(x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M) ¯ post-Listmax(M,m)
¯ pre-Listmax(N) ¯ post-Listmax(N,n))

194 Constructing Correct Software

We have the specifications of three of the parts and two other clauses which link M
and N to x. As we used post-split earlier, we now need to use post-Listmax to
establish a link between x and m rather than between x and M, and similarly for N
and n.

¢
(∃M,N: *,m,n:)

(x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n))

Now we must start playing with inequalities.

Key facts are
m in M fi m in (M»N) and m in (M»N) fi m ≤ x

so
m in M fi m ≤ x

Similarly, n in N fi n ≤ x

and hence we go on

¢
(∃M,N: *,m,n:)

(x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

So far, we have used rationalisation directly, but now it starts to be a little more
difficult. We need to cope with M»N and take one instance at a time.

First notice that
(∀z:)(z in (M»N) fi z ≤ x) ¢ (∀z:)(z in M fi z ≤ x)
 ¯ (∀z:)(z in N fi z ≤ x)

Algorithm Extraction 195

So
(∃M,N: *,m,n:)

(x in (M»N) ¯ (∀z:)(z in (M»N) fi z ≤ x)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

¢
(∃M,N: *,m,n:)

(x in (M»N)
¯ (∀z:)(z in M fi z ≤ x)
¯ (∀z:)(z in N fi z ≤ x)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

and now we can start ‘throwing parts away’,

¢ ((∀z:)(z in M fi z ≤ m) ¯ m ≤ x) fi (∀z:)(z in M fi z ≤ x)

(∃M,N: *,m,n:)
(x in (M»N)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

Now for the tricky bit. We need to remove ‘x in (M»N)’, if we can. But
expanding this term gives rise to a disjunction (an ‘or’ operation) rather than a
conjunction, and hence we must consider different cases if we wish to use
rationalisation.

196 Constructing Correct Software

The first step is easy:

¢
(∃M,N: *,m,n:)

((x in M ˘ x in N)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

The term ‘x in M ˘ x in N’ has to be True, so either ‘x in M’ or ‘x in N’, or
both. We consider two cases, (x in M) and ⁄(x in M), and then use

True ¢ (x in M) ˘ ⁄(x in M)

If (x in M), then x ≤ m and since m ≤ x we deduce x = m . Moreover, the term
‘x in M ˘ x in N’ can be deduced from x = m and ‘m in M’.

So, in this case

((x in M ˘ x in N)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

¢
(pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x ¯ m = x)

Similarly, if ⁄(x in M), then (x in N), x ≤ n, and hence x = n, etc.

Algorithm Extraction 197

So
((x in M ˘ x in N)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

¢
(pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x ¯ n = x)

Putting the two parts together, we have the transformation

(∃M,N: *,m,n:)
((x in M ˘ x in N)
¯ pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x)

¢
(∃M,N: *,m,n:)

(pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M)
¯ m in M ¯ (∀z:)(z in M fi z ≤ m)
¯ pre-Listmax(N)
¯ n in N ¯ (∀z:)(z in N fi z ≤ n)
¯ m ≤ x ¯ n ≤ x ¯ (n = x ˘ m = x))

¢
(∃M,N: *,m,n:)

(pre-split(L) ¯ post-split(L,”M,N’)
¯ pre-Listmax(M) ¯ post-Listmax(M,m)
¯ pre-Listmax(N) ¯ post-Listmax(N,n)
¯ m ≤ x ¯ n ≤ x ¯ (n = x ˘ m = x))

198 Constructing Correct Software

To round off the construction, we could now define the function

combine(”m,n’) – x where: m ≤ x ¯ n ≤ x ¯ (n = x ˘ m = x)

from which we see that combine(”m,n’) ¢ x = if m > n then m else n fi
¢ max(”m,n’)

as before.

Then we can insert implementations:

∞ (∃M,N: *,m,n:)
(”M,N’ = split(L)
¯ m = Listmax(M) ¯ n = Listmax(N)

¯ x = max(m,n))
❑

After lots of expression juggling18 and a final jump to implementations, we have
something that is recognisable as a scheme which corresponds to four sub-
calculations linked by the appropriate variables. But what happens if we get stuck
and fail to achieve this form of expression? The first three parts follow
mechanically providing that we have constructed split as described. The problems
usually arise because we cannot remove unwanted data dependencies, either because
we simply lack the skill to remove them (even though they can legitimately be
removed) or because they are necessary links and cannot be taken out.

In either case, no incorrect (or correct but unjustified) answer is found. This might
be frustrating, but it is safe.

Now for an example for which this tactic can be shown to fail.

Example 3.9
Consider the specification

all_same: * —
pre-all_same(L) – True
post-all_same(L,b) – b › (∃x:)(∀y:)(y in L fi x = y)

Just in case you are perplexed by the pre-condition, we take the stand that
all_same(L) would be False only if it contained two integers which were different.

From the specification, the elements of L are all_same if there is some value x such
that every element in L is equal to x. If L = ”’, then any integer will do for x; and
if L = ”y’, then y would suffice for x.
1 8 Again, the reader needs to check that he fully understands the ‘what and why’ of each step.

Algorithm Extraction 199

Now if #L ≥ 2, then we can replace L by M»N, where #M ≥ 1 and #N ≥ 1 as
before; but since the results obtained from all_same(M) and all_same(N) are
Boolean, no record of the contents of M and N is preserved, and hence structural
splitting fails.

As in traditional testing, a single ‘wrong’ instance can demonstrate failure. But
sometimes we get the ‘right’ answer, so

all_same(”2,2’) ¢ combine(all_same(”2’), all_same(”2’))
¢ combine(True,True)

and
all_same(”2,3’) ¢ combine(all_same(”2’), all_same(”3’))

¢ combine(True,True)

Clearly, we need
all_same(”2,2’) ¢ True

and
all_same(”2,3’) ¢ False

But for a given input, the result returned by a function is unique; therefore there can
be no combine function.

❑

Hence, the basic technique fails when applied to certain specifications. It may be
possible to slightly modify the strategy so that it succeeds, but we shall not
consider that here (but see Chapter 10).

Although, because of our desire to defer the introduction of non-deterministic splits,
we have included extra — but unused — clauses within their specification,

post-split(L,”M,N’) fi #M ≥ 1 ¯ #N ≥ 1 ¯ L = M»N
[¯ ((#M = #N) ˘ (#M = #N + 1))]

it is clear that the bracketed ‘[..]’ clause could have been omitted and introduced
much later. Indeed, since the concatenation operator “»” is associative, splitting
the list L anywhere19 would give the same answer to a terminating computation;
this property is exploited in Chapter 5 when we consider a class of ‘more abstract’
operations20. Notice also, that even though we can take a sufficiently large data
item, split it, process its constituent parts and build an ‘answer’ from the results of
these processes, there is no guarantee that the answer will fit the original problem.

1 9 That is consistent with the rest of the specification.
2 0 (Which you might regard as either non-recursive or super-recursive depending on your point of
view.)

200 Constructing Correct Software

As in the Listmax example, if the tactic is to succeed, we need certain implications
(the strictly Boolean ‘fi’) to hold in order that superfluous clauses can be legally
‘thrown away’ so as to leave us with the required four components depicted in
Figure 3.4. This is the most complicated part of this construction but, again,
associative operators can often ‘come to the rescue’ and make the processing easier.

3.2.3.2 Predicated Splitting

As an extreme contrast to Structural Splitting, a Predicated Split completely
ignores the structure of the input, so the input can generally be regarded as a bag,
being the most unstructured way of holding finite amounts of data whilst allowing
duplicates. Using a predicated split simply involves dividing up the input bag into
two or more sub-bags, the contents of which satisfy extra properties (dictated by
predicates) which we can choose.

Sensible examples will come later, but to indicate the general scenario, suppose we
have a specification of a function as follows:

f:X* — Y
pre-f...
post-f(L, y) – (∀x:X)(x in L fi property(x, y)

Now choose some discriminating condition, cond:X — , and proceed thus:

post-f(L, y) ¢ (∀x:X)(x in L fi property(x, y))
¢ (∀x:X)((x in L ¯ True) fi property(x, y))
¢ (∀x:X)((x in L ¯ (cond(x) ˘⁄cond(x)) fi property(x, y))
¢ (∀x:X)((x in L ¯ cond(x)) fi property(x, y))
 ¯ (∀x:X)((x in L ¯ ⁄cond(x)) fi property(x, y))

These two parts can then be developed separately, the intention being that knowing
that cond(x) (¢ True) or ⁄cond(x) makes the evaluation of property(x, y) simpler.

To be a little more concrete, suppose that X was and disc was is_even, so that
we could process even and odd values as two cases.

3.2.3.3 Mixed Strategies

Whereas the first two variants of the problem decomposition tactic either deal
exclusively with the structure of the input or completely ignore the overall structure
in favour of the constituent items within the input, here we split the input into
parts. However, the way in which this is done depends (to some extent) on the
actual values within the input.

Algorithm Extraction 201

For example, we might want to split a list at a point where a particular relationship
exists between consecutive values, say x = y , x ≠ y , or x > y, where the input is
regarded as N»M and N ¢ ”... ,x’, and M ¢ ”y , ...’.

Example 3.10 Perhaps the most immediate example of this situation concerns
lists of numbers (say, integers) in which we are interested in sequences of non-
decreasing values. When we do not have this situation, then the list can be written
as N»M, where N,M: * and N ¢ ”... , x’, and M ¢ ”y , ...’ and x > y.

❑

3.2.3.4 Domain Partitioning

This is another kind of problem decomposition. It is not concerned with breaking
up single input values but with dividing up the set of valid inputs (which
constitutes the domain of the function being implemented).

Typically this tactic uses a ‘property’ of the input, seen as a single entity, to
introduce different ‘cases’ — enough cases to cover all eventualities. A common
situation is to use it to separate simple cases from more complex ones. This may
well be seen as ‘putting it all together’.

Generically we might have

 if input_is_small
then solve_problem_directly
else decompose_input_further
fi

Here the notion of size is related to a suitable measure which, of course, is
problem-dependent. Familiar examples are

L = ”’
#L = 1
A = Ø
in_order L where: L: *

This tactic is an almost inevitable part of any derivation. Indeed, it is used every
time recursion is involved to identify the exit/termination condition. It is certainly
no big deal and is mentioned here only for the sake of completeness and to
emphasise that choosing to recurse further or to process in some other (direct?) way
is a design decision, albeit one which might be taken almost subconsciously.

Example 3.11 Following on from the previous example, we can identify the
existence of N,M, x,y with the list not being ‘in_order’.

❑

202 Constructing Correct Software

3.2.4 The Use of Analogy

The tactics given earlier all suppose that we are trying to solve a problem (construct
a program) ‘ab initio’ — from scratch. Often, this will not be the case. There will
be some similarity with other programs already known to the software engineer.
Here we seek to cut down the work required in a full, step-by-step synthesis by
drawing an analogy between the current problem and another for which we know a
correct transformation21.

In general terms, there is little more that can be said about the use of analogies, but
by reference to Figure 3.5 we point out the connection between two analogous
design steps and a (more abstract) transfinement rule. [This is described as being a
specification-to-design step, but it can be equally well be applied to a pair of
designs, one of which is an operational transfinement of the other.]

AS

AD

S1 S2

D2D1

translation

abstraction

analogy

instantiations

specifications

designs

 a known
 (correct)
derivation

Figure 3.5

The typical situation is as follows. We know of an existing (correct) transfinement
step S1 ∞ D1 (simply regard D1 as an implementation of S1 if this helps to

understand the situation) and notice some similarity between S1 and a ‘new’

specification S2. It must be similar to the extent that we can perform a translation,

changing names, types, operations etc. from S1 to S2 and the translation is

reversible. Moreover, the properties used in the transfinement S1 ∞ D1 are also

present in S2. One way to check this requirement is to abstract from S1 to AS, a

specification of a more general function in which the common elements of S1 and

S2 are included directly and the different components are replaced by generalisations
2 1 This tactic is applicable not only to transformations but also to refinements (as will be discussed in
Chapter 6). We shall therefore use the transfinement notation ‘∞’. The symbol ‘∞’ can be replaced
throughout by ‘¢’.

Algorithm Extraction 203

which have the properties essential for the application of the S1 ∞ D1 step. Then,

applying the same transfinement step to AS yields (by definition) AD, a design for

AS. Then AS ∞ AD is a rule which, with suitable substitutions will give us back

the transfinement S 1 ∞ D 1 ; it will also give us S 2 ∞ D 2 by using other

substitutions.

Analogy is a very vague notion, but, as you will see from the example below, it is
not new. It is precisely by recognising analogous situations that useful rules are
identified and formalised to an appropriate level of parameterisation.

If a given transfinement can only be employed occasionally, then the extraction of
the associated rule is perhaps not worth serious consideration. If, however, the
same kind of situation arises very often, then it is worthwhile deriving a suitably
abstract rule. The rule can then be applied directly without reference to earlier
instances of its use. Indeed it makes good sense for software engineers to build
their own library of these rules.

Example 3.12 For the ‘known’ transfinement 22 we linking the recursive program
scheme R1 to the iterative (looping) scheme L1, where23:

R1 – S: æ sum_of(L: *)

where: sum_of(L) – if L = ”’ then 0
else first_of(L) + sum_of(rest_of(L)) fi

L1 – begin var N: *, res: ;

N æ L;
res æ 0;
while N ≠ ”’

do res æ res + first_of(N);
N æ rest_of(N)

od;
S æ res

end

We are now presented with R2 defined by

P: æ product(W: *)
where: product(W) – if W = ”’ then 1

else first_of(W) * product(rest_of(W)) fi

The ‘known’ transfinement R1 ∞ L1 utilises the associativity of addition and the fact

that 0 is an identity element for addition. These properties also hold for
2 2 This will be derived in Chapter 4.
2 3 Here, R1 and L1 correspond to S1 and D1 in the general formulation.

204 Constructing Correct Software

multiplication (and the constant value 1) in R2. So by analogy we can write down

L2 by translating L1 in a way consistent with the differences between R1 and R2 to

give

L2 – begin var N: *, res: ;

N æ W;
res æ 1;
while N ≠ ”’

do res æ res * first_of(N);
N æ rest_of(N)

od;
P æ res

end

The underlying rule that gives rise to these steps, and many others, can be expressed
as

 (∀a,b,c:) (a ♦ (b ♦ c) = (a ♦ b) ♦ c)
 where ♦ is an infix operator of type Ù —

 (∃ e:)
(∀a:) (a♦e = a ¯ e♦a = a)

 (∀L: *)(f(L) = if (L = ”’) then e else first_of(L) ♦ f(rest_of(L)) fi)

S æ f(L) ¢ begin var N: *, res: ;
N æ L;
res æ e;
while N ≠ ”’

do res æ res ♦ first_of(N);
N æ rest_of(N)

od;
S æ res

end

Of course, this rule can be further abstracted; there is nothing special about the type
.

❑

For obvious reasons, ‘analogy’ is also known as ‘abstraction and re-instantiation’
[re-use and inheritance of software design].

When developing software, we make use of intrinsic properties of data types (most
notably the operations and methods on and between data types) and of functions and
predicates that are used in the specification.

Algorithm Extraction 205

Abstraction may be viewed as a kind of parameterisation, but not just the kind of
parameter found in sub-programs (procedures or functions) of conventional
procedural programming examples.

The notions of abstraction and analogy are difficult to grasp (until they suddenly
become ‘obvious’), yet examples are very common. To formalise the concept only
makes it seem harder. We shall be content to mention it, in passing, when suitable
examples occur.

3.3 ‘Eureka’ Processes

Constructing any non-trivial program involves very many small parts. If any part
of the construction is not formally justified, then the correctness of the entire
program is compromised. But how do we manage all this detail? We have a
quandary. Are there any ‘work-arounds’?

One approach is to re-use existing program segments. This is essentially what
object-oriented programming is all about; we can abstract (as in Section 3.2.4) from
existing program (or segment) designs and — in some sense — parameterise related
specifications and implementations. These can be collected together to form higher-
level classes (of objects and functions that act upon them). Essentially this is a
generalisation of our presentation of types, a generalisation which we shall not
investigate in this text. The closest we get to the topic is investigating the formal
link between existing designs and the designs we require. This is studied in Chapter
6.

Another approach can be described as a ‘sideways’ derivation instead of working
‘down’ from a specification — in a purely constructive way — or working
‘upwards’ by trying to verify that code does actually satisfy a specification.
Alternatively, when presented with a problem, whether an entire problem or just a
small ‘sub-computation’, for which we can ‘see’ a solution/implementation24, we
write down a set of rules which we want to be true of the implementation. We
must then show that each rule is consistent with the specification, that for any
input/data value exactly one rule is applicable, and that there is an appropriate
notion of reduction. From these rules, we can routinely construct a converging
recursive implementation.

This technique, which we will not define formally, can typically be used within the
split or combine phases of a divide-and-conquer design, or for an entire higher level
calculation. We illustrate the technique by a sequence of examples.
2 4 There may also be cases where a function is defined or specified (inductively) by such a set of
rules, e.g. the factorial function defined by (n = 0) fact(n) ¢ 1

(n >1) fact(n) ¢ n * fact(n-1)

206 Constructing Correct Software

We are really trying to justify using guesswork, but in a way that does not
compromise our formal derivation procedure. The computational procedures that
we use will be realised as recursive functions. One step in the procedure
corresponds to a single function evaluation.

To do this, and this may well also utilise one of the strategies25 introduced in
Section 3.2, we must relate our guess to the specification 2 6. We do this by
considering different ‘cases’; sufficient to cover all eventualities (and, to avoid the
possibility of introducing ambiguity27, these cases should be disjoint and hence
only one rule is applicable in any given situation). Moreover, application of a non-
terminal rule (i.e., one which requires further application of the same process) must
employ an appropriate ‘reduction’ between the current and ‘next’ parameter values
so as to guarantee convergence of the recursion.

We start our sequence of examples by revisiting some of the calculations discussed
in the Introduction, Chapter 0. But, because these examples use operators, we
insert here a description of how the idea works on a function. Also, since it is
timely, we relate these ‘simple28’ recursive functions to parameterless recursive
procedures.

To clarify and emphasize the link between the rules (the conditions for which are
disjoint and allow for all valid situations) and an implementation design, consider
the following scenario for the definition of f: X — Y:

(p(x)) f(x) ¢ g(x) (a)
(q(x)) f(x) ¢ f(h(x)) (b)
(r(x)) f(x) ¢ m(f(k(x))) (c)29

Following on from the properties of the guarding conditions for these rules, for a
given input value only one condition will hold at each stage of the computation.
Hence, a definite sequence of rule applications is determined; in this case this will
be an ordered progression of (b) and (c) rules followed by a single application of (a).

2 5 Principally, problem reduction.
2 6 In the initial examples this is traditional calculation. More general situations will be considered
later.
2 7 Allowing the introduction of ambiguity may not cause problems. Indeed, it may be useful to have
another degree of non-determinism, but this would require construction of a proof that all possible
derived calculations were correct. This is something that we do not wish to consider here.
2 8 By ‘simple’ we mean that in their evaluation we do not need to ‘remember’ values after they have
been used once. And functions which produce duplicate or ‘partial’ copies of the input (and hence
may circumvent this restriction) are disallowed within these rules. The net effect is to produce
functions which can be evaluated sequentially.
2 9 More complex configurations are possible but our narrative applies only to ‘simple’ cases where
the right-hand side expression involves a single occurrence of f.

Algorithm Extraction 207

The rules could be combined into a single composite rule or, with what amounts
almost only to a change in punctuation, the implementation

f – (x:X) (if p(x) then g(x)
else_if q(x) then f(h(x))

else m(f(k(x))) fi)

 — the correctness of which follows immediately.

Notice also that since we use call-by-value with functions, simple recursive
embeddings of functions (such as those used here) can be replaced by recursive
schemes using a parameterless procedure. To do this, we make the passing of
parameters and results explicit. First identify the types of the functions used in the
implementation scheme above.

f: X — Y
g: X — Y
h: X — X
k: X — X
m :Y — Y

Then we replace y æ f(x)

by s æ x; proc-f ; y æ t with s:X and t:Y declared as locals.

The construction of the procedure proc-f, which embodies f, follows in a
straightforward fashion as

proc-f – if p(s) then t æ g(s)

else_if q(s) then s æ h(s); proc-f

else s æ k(s); proc-f ; t æ m(t)
fi

In each case (p, ⁄pq, ⁄p⁄q) the input value s yields the output value t.

Apart from a single instance of s and t there is no need to generate new local
versions on each recursive call (as would be the case with f, even though it has no
local data, new space is required to hold the input parameter on every recursive
invocation). This may be very important in some situations, and these procedures
can be usefully employed when ‘changes to data’ are required. We shall say more
about this when we meet specific applications.

208 Constructing Correct Software

Now for the promised examples.

Example 3.13 This example concerns the ‘div’ operation/function30.

Recall the specification, which we can now write more formally,

 div — (the type, and indication of the infix syntax)
pre-div(”n,d’) – d ≠ 0
post-div(”n,d’, q) – (∃r:)(n = q*d + r ¯ 0 ≤ r < d)

i.e., n div d represents n ÷ d (integer division)

n ÷ d = q (and r is the remainder),

So, for example 11 ÷ 4 = 2

since 11 = 2*4 + 3

Notice that is actually a structured type and hence we could use structural
decomposition:

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1

4 + 3

But you might regard this as rather ‘over the top’. So let’s just think of numbers
in the usual way; and we will simplify matters even more and restrict the type to

 div —

(although what follows could be easily adapted to cope with negative values as
well).

Now for the intuitive guess. It may be an informed guess, but it is a guess
nevertheless.

We take three cases, n <d, n =d and n >d. Clearly, these are distinct and cover all
eventualities for possible, legal, values of n and d.

If n<d then we suggest that q = 0 and r = n,
if n =d then q =1 and r = 0

3 0 In an attempt to help distinguish items within expressions, we shall arbitrarily adopt the convention
of using italic text for user-defined function names and plain text for (infix) operators.

Algorithm Extraction 209

and otherwise31, when n > d, let n=s+ t (with s ≥ 0 and t ≥ 0), so that

n div d = s div d + t div d
and

(s+t) div d = s div d + t div d

Before we can use these equalities as transformation rules, we must check that they
are correct wrt the specification32.

If n<d, and q=0 (and r=n), then

q*d + r = 0*d + n
= 0 + n
= n

and
0 ≤ r < d › 0 ≤ n < d

This is as required so

(n<d) n div d ¢ 0 is a valid rule.

Similarly, if n=d, q=1 and r=0

then q*d + r = 1*n + 0
= n

and
0 ≤ r < d › 0 ≤ 0 < d

so
(n=d) n div d ¢ 1 is valid.

But what about the ‘n>d’ case?
Notice that

(5 + 4) div 4 = 2
and

5 div 4 + 4 div 4 = 1 + 1 = 2
which is correct.

But
6 div 4 + 3 div 4 = 1 + 0 = 1

and
6 + 3 = 5 + 4

3 1 This is wrong. We must find this out and devise a correct replacement.
2 7 The specification involves equalities (‘=’) and hence we shall use ‘=’ in the calculations.
Alternatively, we could have used ‘¢’ and deduced that if a ¢ b, then a = b (¢ True).

210 Constructing Correct Software

So the answers may be different when we decompose n in different ways; it is not
always true that

(s+t) div d = s div d + t div d

But if we had not seen a counter-example, we might have believed 33 that the
relationship was (always) valid and, erroneously, that

((s+t) > d) (s+t) div d ¢ s div d + t div d
was a valid rule.

So, what rule can we use? Can we show why this, over simplistic, version is
wrong? This might help us find a fix.

Let’s work it out.

Assume that
(s+t) div d = q (and remainder is r),

s div d = q1 (and remainder is r1)
and t div d = q2 (and remainder is r2)

i.e., s+t = q*d + r and 0 ≤ r < d
s = q1*d + r1 and 0 ≤ r1 < d
t = q2*d + r2 and 0 ≤ r2 < d

So,
q*d + r = q1*d + r1 + q2*d + r2

= (q1 + q2)*d + (r1 + r2)

Therefore
(s+t) div d = s div d + t div d

providing that
0 ≤ r1 + r2 < d

But
0 ≤ r1 < d and 0 ≤ r2 < d

so
 0 ≤ r1 + r2 < 2*d (not < d)

Our rule would work if we could ensure that

0 ≤ r1 + r2 < d

One way to achieve this would be to make r2 = 0, i.e., to insist that t was an exact
multiple of d.

3 3 This is exactly the trap into which traditional testing falls. “We haven’t found a case where it goes
wrong, therefore we deduce that it always works.” Clearly, this is logical nonsense.

Algorithm Extraction 211

To choose q2 = 0 would get us nowhere since it would make t = 0 and hence

s div d ¢ (s+t) div d
¢ s div d + t div d
¢ s div d + 0 div d
¢ s div d + 0
¢ s div d

which makes no progress.

Reducing (s+t) to s with t≠0 guarantees convergence. So taking q2=134, then:

t = 1 * d + 0
= d

and
n = s + t

= s + d
so

s = n – d

Putting this together, since n>d and s = n–d, it follows that s>0.

If n div d = q (with remainder r), what is s div d? i.e., (n–d) div d

n – d = (q*d + r) – d
= (q – 1)*d + r and 0 ≤ r < d

Thus
(n–d) div d = q – 1

= n div d – 1

Our final rule is therefore

(n>d) n div d ¢ (n–d) div d + 1

Collecting these together35,

(n<d) n div d ¢ 0
(n=d) n div d ¢ 1
(n>d) n div d ¢ (n-d) div d + 1

[The ‘<’ and ‘=’ rules are terminal and hence must satisfy the specification directly.
The ‘>’ rule is an intermediate rule, and its validity follows from the fact that if the
‘smaller’ evaluation of div is correct then so is the ‘larger’ one as given in the rule.
This is another hidden form of induction.]
3 4 Other choices are possible, and we shall use some of these to great effect later.
3 5 As always, under appropriate conditions, the rules may be applied in either direction. Notice,
however, that in order to fully evaluate n div d, the rules must ultimately be applied left to right.

212 Constructing Correct Software

Factoring these together, we can immediately define a correct (and converging)
recursive implementation:

n div d – if n<d then 0
else if n=d then 1

else (n–d) div d + 1
fi

fi

Notice that, as with all recursive implementations, we need to ensure convergence.
Here the positive integer parameter n is reduced to n–d until we reach an exit case
(not necessarily zero; although a more complicated measure that does reach zero can
be invented, there is no necessity for this).

[Notice that we only allow call by value, and using recursive functions requires new
‘local’ space to be allocated on each call. However, this space is only used to pass
data into an expression evaluation and, in simple cases like this where there is only
a single embedded function call, once that call is invoked, the space is never
accessed again. We can avoid this by first setting up the initial parameter values
and then using a parameterless recursive procedure that accesses and changes what it
sees as ‘global’ variables. Applying this to our current example yields

”x, y, q’ æ ”n, d, 0’; div_proc

where:

div-proc – if x < y then q æ 0 (or skip)
else if x = y then q æ 1

else x æ x – y; div_proc; q æ q + 1
fi

fi]
❑

Example 3.14 We can use the same approach to compute the remainder of
performing division. We can even calculate both at the same time.

We denote the remainder of dividing n by d by n mod d (which is spoken as “n
modulo d”).

So 11 mod 4 = 3 (11 = 2*4 + 3)
 (more generally n = q*d + r with 0 ≤ r < d)

The functions / operations div and mod are related by the identity

n = (n div d) * d + n mod d

Algorithm Extraction 213

Once we have div, we can easily calculate mod by using this relationship.
Alternatively, as in the previous example, we can derive a set of rules for its direct
computation.

Such a set of rules is

(n < d) n mod d ¢ n
(n = d) n mod d ¢ 0
(n > d) n mod d ¢ (n–d) mod d

Justification of these rules is straightforward and left as an exercise to the reader.

[You may regard this as tedious and unnecessary detail, but such working is all part
of establishing familiarity with the problem under consideration. Detail of this
nature is required somewhere within the computation; we are merely bringing it out
into the open and making it explicit early in the programming process.]

Now we can combine the sets of rules to give

(n<d) ”n div d , n mod d’ ¢ ”0, n’
(n=d) ”n div d , n mod d’ ¢ ”1, 0’
(n>d) ”n div d , n mod d’ ¢ ”(n–d) div d + 1, (n–d) mod d ’

or, inventing a new function (a new function name),

div_mod: Ù — Ù
div_mod: ”n , d’ Ÿ ”n div d , n mod d’

where
(n < d) div_mod(n,d) ¢ ”0, n’
(n = d) div_mod(n,d) ¢ ”1, 0’
(n > d) div_mod(n,d) ¢ div_mod((n–d),d) + ”1, 0’

In the (n>d) rule the ‘+’ is componentwise addition over Ù , defined by

” x, y’ + ” a, b’ – ” x + a, y + b’

Again, a recursive implementation follows immediately from these rules:

div_mod(n,d) – if n<d then ”0, n’
else if n=d then ”1, 0’

else div_mod((n–d),d) + ”1, 0’
fi

fi

214 Constructing Correct Software

Extraction of the individual components can be achieved simultaneously by the
assignment

”q, r’ æ div_mod(n,d)

[Again we can use a recursive procedure so, as a further illustration

”x, y, q, r’ æ ”n, d, 0, 0’; div_mod_proc

where:

div_mod_proc – if x < y then ”q, r’ æ ”0, x’
else if x = y then ”q, r’ æ ”1, 0’

else x æ x – y; div_mod_proc; q æ q + 1
fi

fi]
❑

Example 3.15 We now return to the ‘greatest common divisor’ example
discussed in Chapter 0. Recall the following

gcd(m, n:) – the largest i: such that i|m and i|n.

 “the function gcd ... (–) is defined to be ... (i|m) i divides m and”

With the reasoning given in Chapter 0, we have rules

(m=n) gcd(m, n) ¢ n which is OK

and
gcd(m, n) ¢ gcd(n, m) which makes no progress.

However, we also had

gcd(m+n, n) ¢ gcd(m, n)

We can use this, together with the ‘swapping’ rule to give

(m< n) gcd(m, n) ¢ gcd(m, n–m)

and

(m>n) gcd(m, n) ¢ gcd(m–n, n)

These are not cyclic per se, but may step up or down, including up, down, up ...,
etc., and hence not converge. However, we can pick out the rules we want so as to
yield a finite non-repeating sequence of intermediate expressions which will evaluate
the gcd function; we simply use the rules that strictly reduce the sum of the
parameters as necessary until an exit case is reached.

Algorithm Extraction 215

Hence, we have

gcd(m, n) – if m=n then n
else if m > n then gcd(m–n, n)

else gcd(m, n–m)
fi

fi

which is a slight modification of the earlier version.
❑

In recent examples, we have seen some (perfectly valid) ‘funny functions’ and
unusual ways of combining functions, their parameters, and their results.
Likewise, some of the manipulations in the following example may seem rather
strange, but they are perfectly valid; stick with us. It all falls out nicely in the end.

Example 3.16 This example uses the Fibonacci function, fib: — . This is
a function which you may have seen before. It is defined inductively by the
following set of rules and is particularly interesting to us because on the face of
things the direct method of calculation — by program — is rather involved and
possibly inefficient.

fib(0) ¢ 1
fib(1) ¢ 1

(n >1) fib(n) ¢ fib(n–1) + fib(n–2)

Using these rules, we can calculate

fib(0), fib(1), fib(2), fib(3), fib(4), etc.

to obtain the (we hope) familiar Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, etc.

The rules also give rise to a correct, convergent, implementation:

fib(n) – if n= 0 ˘ n= 1 then 1
else fib(n–1) + fib(n–2)

fi

but using this, as it stands, involves much repeated calculation/evaluation.

Clearly, it is possible, by hand-crafting the program code, to save intermediate
values and avoid much of the duplicated effort, but can we achieve the same effect
systematically by using some ‘eureka’ function(s) which then fits with our simple
(even simplistic) way of handling recursion? Yes!

216 Constructing Correct Software

One possibility is as follows. Notice that in the non-trivial cases we use two
earlier (smaller!) evaluations of fib; so let’s invent a new function, fib2, which
gives both of these values from a single parameter. We define

fib2: — Ù (with pre-fib2(n) – n>1)
by

fib2: n Ÿ ” fib(n–1), fib(n–2)’

It would then follow that fib(n) = x + y where ”x, y’ = fib2(n)

How does this help?

Well, for n>2 we have

fib2(n) ¢ ” fib(n–1), fib(n–2)’
¢ ” fib(n–2) + fib(n–3), fib(n–2)’
¢ ”x + y, x’

where: ”x, y’ = fib2(n–1)

So, with a little ‘housekeeping’ and addition, we can compute fib2(n) from
fib2(n–1). This looks peculiar because the function fib2 takes a single argument
and delivers a result having 2 components, rather than 1. We can make the
situation look more ‘normal’ not by removing it but by including an extra
function, of type: Ù — Ù . We call it update. Perhaps predictably, we
define update by

update(”x, y’) – ”x + y, x’ over Ù .

Then
(n=2) fib2(n) ¢ ”1, 1’
(n>2) fib2(n) ¢ update(fib2(n–1))

See how this works for n = 5:

fib(5) ¢ x + y

where ”x, y’ ¢ fib2(5)
¢ update(fib2(4))
¢ update(update(fib2(3)))
¢ update(update(update(fib2(2))))
¢ update(update(update(”1, 1’)))
¢ update(update(”2, 1’))
¢ update(”3, 2’)
¢ ”5, 3’

Algorithm Extraction 217

and
x + y = 8

Hence we can construct a recursive implementation scheme based on our new rules
for fib2:

fib2(n) – if n = 2 then ”1, 1’
else update(fib2(n–1))

fi;

update(”x, y’) –”x + y, x’
and

fib(n) – if n< 2 then 1 else x+y fi
where: ”x, y’ = fib2(n–1)

Before leaving this example, notice that:

(n>2) fib2(n) ¢ updaten–2(fib2(2))

so, for suitably large values of n, we could take bigger jumps and use, say

up2 (i.e., up2 – update ° update
¢ (”x, y’)(”2*x + y, x + y’))

Thus, for instance

up2(”1, 1’) ¢ ”2*1 + 1, 1 + 1’
¢ ”3, 2’

and we miss out the “” 2, 1’” term in the earlier evaluation sequence.

We shall return to such possibilities in Chapter 4.
❑

Finally, we have an examplethat is mathematical but not arithmetical.

Example 3.17 The merge function. Recall its specification.

merge: *Ù * — *
pre-merge(”N1,N2’) – ascending(N1) ¯ ascending(N2)

post-merge(”N1,N2’,N) – ascending(N) ¯

 bag_of(N) = bag_of(N1) È bag_of(N2)

We change the names of the variables just to keep the expressions slightly simpler.

218 Constructing Correct Software

Consider merge(P,Q).

It would seem reasonable that merge(P,”’) = P
merge(”’,Q) = Q

and36

merge(P,”x’) = insert(x,P)
merge(”x’,Q) = insert(x,Q)

where
insert: Ù * — *
pre-insert(”x,L’) – ascending(L)
post-insert(”x,L’,N) – ascending(N) ¯

 bag_of(N) = bag_of(L) È ÊxÁ

and37, if P and Q are split at productive38 and corresponding places,

merge(P1»P2,Q1»Q2) = merge(P1,Q1)»merge(P2,Q2).

As always, if we wish to make use of these five identities as rules, they must be
checked. To illustrate we take merge(P,”’) ¢ P.

Given the assumption that pre-merge(”P,”’’ (– ascending(P)) is True, it
follows that

 post-merge(”P,”’’,P) ¢ ascending(P) ¯
bag_of(P) = bag_of(P) È bag_of(”’)

¢ True ¯ bag_of(P) = bag_of(P) È Ø
¢ bag_of(P) = bag_of(P)
¢ True

Similarly, for merge(P,”x’) ¢ insert(x,P) to be valid we have to show that

post-merge(”P,”x’’,Q) = post-insert(”x,P’,Q) is True.

This is straightforward:

 post-merge(”P,”x’’,Q) = post-insert(”x,P’,Q)

¢ (ascending(Q) ¯ bag_of(Q) = bag_of(P) È bag_of(”x’))
 = (ascending(Q) ¯ bag_of(Q) = bag_of(P) È ÊxÁ)

¢ (ascending(Q) ¯ bag_of(Q) = bag_of(P) È ÊxÁ)
 = (ascending(Q) ¯ bag_of(Q) = bag_of(P) È ÊxÁ)

¢ True
3 6 Actually the singleton forms are not needed in what follows, but investigation of such cases is a
reasonable step in the evolution of designs.
3 7 Likewise, we shall not use this form directly, but it is a reasonable situation to consider when
investigating the current problem.
3 8 So that the break point does not fall outside of the original lists and hence the new sub-problems
really are smaller. We call this ‘double-split’ and use it within the next set of exercises.

Algorithm Extraction 219

So the first four identities hold (those concerning the cases when at least one of the
lists is empty or a singleton). Instead of tackling the last one directly, we will use
the same idea but avoid a general split and consider (in the cases when P and Q are
not empty) the suitability of first_of(P) and first_of(Q) as values to split Q and P,
respectively.

Suppose that P = ”x’»A and Q = ”y’»B. If x ≤ y, then the first element of
merge(P,Q) ought to be x and we should have merge(P,Q) = ”x’»merge(A,Q),
and if x > y, then surely merge(P,Q) = ”y’»merge(P,B).

We check the first of these,

(x≤y)
 post-merge(”P,Q’, ”x’»merge(A,Q))
¢
 post-merge(””x’»A,”y’»B’, ”x’»merge(A,Q))

¢ using the definition of post-merge and Q ¢ ”y’»B

ascending(”x’»merge(A,”y’»B)) ¯
 bag_of(”x’»merge(A,”y’»B)) = bag_of(”x’»A) È bag_of(”y’»B)

¢
ascending(”x’»merge(A,”y’»B)) ¯
bag_of(”x’) È bag_of(A) È bag_of(”y’»B)
 = bag_of(”x’) È bag_of(A) È bag_of(”y’»B)

¢
ascending(”x’»merge(A,”y’»B)) ¯ True

¢
ascending(”x’»merge(A,”y’»B))

If A = ”’, then merge(A,”y’»B) = ”y’»B and x ≤ y so ”x’»”y’»B is
ascending:
i.e.,

¢ ascending(”x’»”y’»B) ¢ True

Otherwise, x ≤ first_of(A) since ”x’»A is ascending and hence

first_of(merge(A,”y’»B)) is either y (and x≤y) or first_of(A)
and

merge(A,”y’»B) is ascending, therefore so is ”x’»merge(A,”y’»B),

and again

¢ ascending(”x’»merge(A,”y’»B))

¢ True

220 Constructing Correct Software

These identities can therefore give rise to rules and, putting all this together

merge(P,Q) ¢ if P = ”’ Ò Q = ”’ -- see39

then P»Q
else if first_of(P) ≤ first_of(Q)

then ”first_of(P)’»merge(rest_of(P),Q)
else ”first_of(Q)’»merge(P, rest_of(Q))
fi

fi

This is a recursive functional design (which converges using #X * #Y as a

measure on merge(X,Y)) that can subsequently be transformed into an iterative
procedural scheme such as

merge(P,Q) – (var A,B,C: *;
”A,B’ æ ”P,Q’;
C æ ”’;
while A ≠ ”’ B ≠ ”’ --see40

do if first_of(A) ≤ first_of(B)
then C æ C»”first_of(A)’; A æ rest_of(A)
else C æ C»”first_of(B)’; B æ rest_of(B)
fi

od;
[result æ] C»A»B)

Details of this transformation are not included here, but corresponding details will
be given for similar transformations in Chapter 4.

❑

Exercises

3.2 Construct a specification for ‘double-split’, splitting two integer lists at
corresponding places.

Summary So we now have a collection of general tactics for the creation of a
program design linked to a formal specification, either by forward synthesis, by
retrospective checking, or by ‘sideways’ inspiration in the form of a ‘eureka’ step.
Along the way we have included quite a few examples. More examples and
exercises will be included in later chapters, but first we consider the problem of
removing recursion and the possibility of replacing it by more familiar constructs.

3 9 This is the sequential or operator. If a is True, then we ignore b in the evaluation of aÒb.
4 0 The sequential and. By a variant of de Morgan’s Law, ⁄(a Ò b) ¢ ⁄a ⁄b.

Algorithm Extraction 221

Chapter 4
Recursion Removal

Using the techniques of the previous chapter, we have a ‘functional’ program. The
essence of a functional program is the expressing of a calculation in the form of a
function call, f(x) say, which delivers ‘the answer’ when given an input value x .
The program can thus be represented by a function definition/declaration followed
by a function call:

f(x) – ... ;
f(x)

In a more relational form, in which y explicitly represents the answer/result/output
we may write

y = f(x) (¢ True).

Within this form of program, we have assumed that x has been given its value
before commencing the real computation (we shall continue to assume this for
some considerable time), that the central computation corresponds to the evaluation
of f(x), and that the value of x is never changed. Thus we can regard it as a
constant. The value y has also been treated as a constant, which is unknown and
which satisfies the various properties given in the specification. We now move on
to a representation of the calculation in which delivery of the ‘answer’ to y is made
explicit.

Conversion into a procedural program then gives us the command

y æ f(x)
after which, of course, y = f(x) ¢ True.

This is the first instance of a ‘variable’ having a value assigned to it — of a
‘variable’ changing value. Here the ‘variable’ y is given a value once, and so far
this is the only assignment in the program. We now introduce other assignments,
which will be derived by transformations and are used to control the program
execution (the evaluation of the function).

To run functional programs1, the execution system needs to be able to evaluate
recursive functions with complex types of input and output. Certain kinds of
recursion can be systematically replaced by iterative constructs (such as “while” and
“repeat”), and then the function evaluation is achieved effectively by (a sequence of)
state changes resulting from the execution of a sequence of commands.

Put more generally, if x:X and y:Y are the names associated with the input and
output, then the command

y æ f(x)

acts on the pair of values ”x,y’ of type X Ù Y and results in changing the value
of y. In an even more general situation, a command is of type S — S, where S can
be thought of as a composite data type consisting of all the “variables” used in (this
part of) the program. Of course, it may not be reasonable to change x (the “input”),
but we shall return to that issue when we discuss input/output (I/O) and
communication in Chapter 12.

Procedural programs perform calculations by causing (internal) state changes.
Assuming that all proper I/O is dealt with at the outer-most block of the program,
all other actions can be thought of as acting on some state S. (However, S itself
never changes. It always has the same components, the same names, but the values
associated with its components usually do change, so we need to devise special
conventions to distinguish ‘old’ and ‘new’ values of the same variable. Other
specification notations, such as Z and VDM, need these from the outset. We shall
defer consideration of specified changes until the final chapter.)

We systematically generate the principal assignment statements so as to indicate the
explicit placing of appropriate results in certain named locations2. Other assignment
statements are used to store intermediate calculations and are often introduced within
recursion removal rules. They may be optimised by the application of other
transformation rules, if this is needed. But this is not our immediate concern.

1 Note that our functional programs make very little use of the high-level operations (on functions)
that occur in other ‘proper’ functional languages. Here they are merely used as an intermediate
design tool.
2 The concept of (constant) locations, the contents of which may be changed, is one of the, few,
notions which are central to software engineering. The concept is not a difficult one but is often
misunderstood. On the other hand, the concept of a variable, the value of which actually changes, is
very rare in most mathematics but is often confused with ‘unknown’ constants, which are
commonplace.

224 Constructing Correct Software

So, we have a single assignment statement and (in general) a recursive subroutine
that computes f. The recursion can now be replaced by iteration, but this is not
always easy and may not always be desirable. Here we focus on two related
transformations which cover many common situations.

They give rise to programs involving while loops. Consequently, we need to know
how such loops work. To do this formally, we need to consider the semantics —
the meanings — of procedural programs; however, so as not to get seriously
diverted to looking at programming languages rather than programs, we shall use
flowcharts to indicate how program segments are related.

4.1 Tail Recursion

Changing signatures (e.g., moving from X—Y to XÙY — XÙY) often allows
procedures — derived from functions — to be transformed into a tail-recursive form
and then to a while loop. We shall derive the rule for removal of tail recursion
from the flowchart semantics of the while loop. Then we can use the appropriate
rules whenever the recursive call is embedded (in the conditional specification) in
certain common ways. These are proper transformation rules and hence are
reversible. We shall find it convenient (and much easier) to derive them ‘in
reverse’. And we shall initially also use a diagrammatic representation3 rather than
a textual one.

Let S be the state (of ‘current’ variables) and consider the composite command

while B do C od:S — S

with C:S — S where C is a programming language command
and B:S — where B is a programming language ‘test’.

To make annotations easier, we label “while B do C od” by W, as in Figure 4.1.

Now unfold,(i.e., unwrap) the diagram so as not to pass through the original B test
for a second time. This means that we have to duplicate the test within the flow
diagram in Figure 4.2.

3 The manipulations that we shall perform with these diagrams (either conventional flowcharts or
data-flow diagrams) can be explained algebraically by using expressions to describe sets of execution
paths through the charts, but we shall stick with diagrammatic reasoning, which is probably easier in
the first instance. The formal justification here is similar to the way that equivalence of grammars is
defined by the equality of the languages they generate. Two flowcharts are (strongly) equivalent if
they generate equivalent sets of operation/test traces.

Recursion Removal 225

W:

True

False

C

B

Figure 4.1

W:

TrueFalse B

True

False

C

B

Figure 4.2

Both of these flowcharts give rise to the set of trace sequences starting:
⁄B, B, C, ⁄B, B, C, B, C, ⁄B, etc.;

i.e.,
B is False (do nothing and end),

or
B is True, do C (in the current state), then B is False (end)

or
B is True, do C (in the current state), then B is True,

 do C (in the now current state), then B is False (end)
or

...

226 Constructing Correct Software

Now unfold again to give Figure 4.3.

W:

TrueFalse B

C

True

False

C

B

Figure 4.3

Clearly, this could go on forever, but notice now that we can fold (exactly the same
idea as with functions but now in flowcharts; see Figure 4.4).

Recursion Removal 227

W:

TrueFalse B

C

True

False

C

B
W:

Figure 4.4

So W reappears. This is a recursive characterisation of a while loop! It is called
tai l recursive because the embedded W occurs as the last proper 4 element in one
of the computational paths through this flowchart for W . Performing a fold
operation gives Figure 4.5.

4 A ‘proper’ element, a ‘proper’ command, is one which can (in appropriate circumstances) cause a
change in state.

228 Constructing Correct Software

W:

TrueFalse
B

C

W

Figure 4.5

Hence, coding the (structured) flowchart and using conditional commands, we get

W ¢ if B then C; W else skip fi
or

W ¢ if B then C; W fi

where ‘skip’5 is the ‘do nothing’, ‘change nothing’, command acting on S.

But
W – while B do C od

so we have the conditional rules

(W ≡ while B do C od)6

W ¢ if B then C; W fi

(W ≡ if B then C; W fi)
W ¢ while B do C od

And it works in an almost identical fashion for the general case where the ‘else’
branch of the conditional command need not be ‘skip’. Take the construct labelled
W1 as in Figure 4.6.
5 So ‘skip’ is the identity element wrt the operator ‘;’ in the algebra of flowcharts.
6 ‘≡’ denotes the so-called strong equivalence of flowcharts. For any given initial state, the
corresponding sequences of test outcomes and commands executed through each flowchart are the
same, and when defining a new flowchart segment (using W – ...) we automatically get a rule
(W ¢ ...) as expected.

Recursion Removal 229

W1:

True

False

C

B

D

Figure 4.6

Now unfold by introducing another copy of B (as in Figure 4.7), but do not
coalesce the 2 copies of D!

W1:

True

False

C

B

D

B

D

False
True

Figure 4.7

230 Constructing Correct Software

Then unfold further and introduce another copy of C, as in Figure 4.8.

W1:

TrueFalse
B

D

False

True

C

B

CD

W1:

Figure 4.8

And then fold W1 as in Figure 4.9.

W1:

TrueFalse B

C

W1

D

Figure 4.9

Recursion Removal 231

So
W1 ¢ if B then C; W1 else D fi

[Notice that the flowchart equation
W1 ≡ if B then C; W1 else D fi

 is satisfied by
while B do C od; D

i.e.,
 while B do C od; D ≡ if B then C; while B do C od; D else D fi

As already stated, it will be sufficient to reason about these equivalences by
reference to flowchart manipulations. These can all be re-expressed using an
extended regular algebra. Indeed, we could go further and use denotational
semantics, a mathematical framework for defining the meaning of programming
languages. However, this takes us well away from our main area of study, and we
shall be content to stay with our Program Design Language, PDL, rather than more
complex languages.]

So,
if W1 ≡ if B then C; W1

else D fi

then we can use the rule

W1 ¢ while B do C od; D.

232 Constructing Correct Software

Exercises

4.1 Take the “repeat C until B” command as defined by the flowchart in Figure
4.10 and, by using unfold/fold manipulations, derive an equivalent form in which
the iteration is performed by a “while ... do ... od” construct.

R:

True

False

C

B

Figure 4.10

4.2 Derive a recursive formulation of the “repeat ... until ...” construct.
❑

Now let’s try to manipulate the the while construct ‘in reverse’ and without
pictures. Suppose we have derived the legal (and correct) command

y æ f(x)
where

f – (¬x:X) (if p(x)
then g(x)
else f(h(x))
fi)

so f(x) ¢ (¬x:X) (if p(x)
then g(x)
else f(h(x))
fi) (x)

and
f(x) ¢ if p(x) then g(x)

else f(h(x))
fi

Recursion Removal 233

Then
y æ f(x)

¢
y æ (if p(x)

then g(x)
else f(h(x)) fi)

¢ factoring ‘ if’ through ‘æ’
if p(x) then y æ g(x)

else y æ f(h(x)) fi

We assume that we do not need to preserve x (treat it as a local variable)
¢ W1 not only corresponds to y æ f(x) but also includes x æ ?

where ? is an unknown value7

if p(x) then y æ g(x)
else x æ h(x);

y æ f(x) fi

[Ignoring the type information associated with commands, we have the
[substitutions B ¢ ⁄p(x)
[C ¢ x æ h(x); and (y æ y)

¢ [D ¢ y æ g(x); and (x æ x)
[into the rule (see Figure 4.9)
[
[(W1 ≡ if B then C; W1 else D fi) W1 ¢ while B do C od; D

[and this gives:

while ⁄p(x) do x æ h(x) od;
y æ g(x)

and f has gone, it is no longer referenced and its definition/declaration can be
removed.

The corresponding scheme that preserves the ‘input’ value x is derived from the
form

y = f(x) ¢ (∃v:X)(y = f(v) where: v = x)
or

v æ x; [v is a new local variable
y æ f(v)

We can then change the new local variable v without ‘corrupting’ x.
7 Yes, this can be found, but it does not generally correspond to a requirement within the
specification.

234 Constructing Correct Software

This gives us a rule for the removal of tail recursion, replacing it with a while
loop. Formally

if f:X—Y
f(x) – if p(x)

then g(x)
else f(h(x))
fi

where p:X—
g:X—Y
h:X—X

and (∀x:X)(∃n:) (p(hn(x))

we can replace y æ f(x)

by:
begin var v:X;

v æ x;
while ⁄p(v)

do v æ h(v)
od;

y æ g(v)
end

Expressed as a parameterised transformation rule8 ,9, this is

(¬X::Type,Y::Type)
 (¬f:X—Y) (¬p:X—) (¬g:X—Y) (¬h:X—X)
 (∀x:X)(f(x) = if p(x) then g(x) else f(h(x)) fi) — see10

 (∀x:X)(∃n:) (p(hn(x))) — ditto

y æ f(x) ¢ begin var v:X;
v æ x;
while ⁄p(v)

do v æ h(v)
od;

y æ g(v)
end

8 Eight similar rules can be found in Program Construction, by R G Stone and D J Cooke, CUP,
Cambridge (1987), but we shall only consider the two major rules here. The other rule concerns
“associative recursion”.
9 Assuming that f is total.
1 0 These are conditions governing the applicability of this rule. If the function f is not total (i.e., if it's
pre-condition is not identically True) then the body of this condition should be modified to

(pre-f(x) ¿ (f(x) = if p(x) then g(x) else f(h(x)) fi))
and then the resultant procedural code would only be safe when the initial value of x was known to
satisfy pre-f, so the condition (pre- f(x)) must also be satisfied. This is one of many variants which can
be used, but to consider them here would only be a distraction.

Recursion Removal 235

[This looks very complicated, but that is only because of its high degree of
parameterisation, which enables the basic rule to be applied in many situations.
The central rule is

y æ f(x) ¢ begin var v:X;
v æ x;
while ⁄p(v)

do v æ h(v)
od;

y æ g(v)
end

but this can be applied to any function f (of type X—Y) that is defined using a
template of the form

 (¬x)(if p(x) then g(x) else f(h(x)) fi)

into which functions p, g and h (of types X— , X—Y, and X—X, respectively)
may be substituted and all this for some types X and Y.

So this is very general indeed.

The condition “(∃n:)(p(hn(x)))” guarantees convergence / termination of the loop.
It must be related to a measure m as follows:

m:X —
m(x) = 0 iff p(x) (i.e., p(x) › True)

and m(h(x)) < m(x) otherwise

(Recall that the function h is sometimes called a reduction function for reasons
that are now obvious.)

In fact, we could define m by

m(x) – 0 iff p(x)
and

m(h(x)) – m(x) – 1

Then, for input value x, m(x) = n, where n is the depth of recursion (equal to the
number of iterations of the resulting loop) required for the evaluation of f. We do
not need to know the value of n, but merely that there is such a value.

Before going on, we give an example. This is necessarily simple and somewhat
artificial. Tail recursion, as we shall see below, often occurs in a function that is
not the one which we originally set out to compute. Anyway, here goes.

236 Constructing Correct Software

Example 4.1
Suppose that we have the specification

all_2: * —
pre-all_2(L) – True
post-all_2(L,b) – b › (∀n:)

(n≤ #L ¿11 (∀x:)(x in L at n fi (x = 2)))
where

x in L at n – (∃N,M: *)(L = N »”x’»M ¯ #N = n–1)

So all_2(L) gives the value True only if all the elements of L are equal to the
number 2. Now suppose that, somehow, we have found the solution

b › if L = ”’ then True
else if first_of(L) ≠ 2 then False

else all_2(rest_of(L)
fi

fi
¢ re-arrange into the appropriate form.

b › if L = ”’ Ò first_of(L) ≠ 2
then if L = ”’ then True else False fi
else all_2(rest_of(L))
fi

 So we have

all_2(L) ¢ if L = ”’ Ò first_of(L) ≠ 2
then if L = ”’ then True else False fi
else all_2(rest_of(L))
fi

and then we can replace b æ all_2(L)

by
begin var v: *;

v æ L;
while ⁄(v = ”’ Ò first_of(v) ≠ 2)

do v æ rest_of(v) od;
b æ (if v = ”’ then True else False fi)

end

1 1 Notice that using the Boolean implication might invite us to find the nth item of a list which does not
have n elements.

Recursion Removal 237

A suitable measure is the length of L and

#(”’) = 0
otherwise

#(rest_of(L)) < #L
❑

[Notice that the other component of the exit condition can only cause the recursion
to exit prematurely — a consequence of the conditional logic operators. This and
examples with a similar structure can in fact be tackled more directly using the
notation of Chapter 5.]

4.2 Associative Recursion

Here the occurrence of the recursive call is not the last operation in the ‘recursive
arm’ of the conditional but is followed by a further function (or operation) which is
associative — hence the name. The associativity allows ‘the answer’ to be
computed ‘backwards’ i.e., in the opposite direction from that given by the
recursion.

Suppose we have the situation

f: X — Y
f(x) – if p(x)

then g(x)
else h(f(k(x)), (x))
fi

where p: X —
g: X — Y
k: X — X

: X — Y
h: Y Ù Y — Y

h is associative (i.e., (∀a,b,c:Y) (h(a, h(b, c)) = h(h(a, b), c))
and

(∀x:X) (∃n:) (p(kn(x))).

Here we derive a version of the program that embodies a tail recursion and hence we
can extract a while version. This is a common approach to handling certain kinds
of (non-tail-recursive) recursion.

238 Constructing Correct Software

First look at the (conditional) data-flow segments for some values of x. We need to
go down two levels so as to include two occurrences of the function h. With only a
single instance, we cannot make use of its associativity. The first diagram (Figure
4.11) is trivial and relates to the situation when p(x) is True.

(p(x)) x

y

g

Figure 4.11

When p(x) is False, we have the — downwards — data flow as in Figure 4.12.
Here, we introduce two new functions on either side of the dotted line, with as
much non-recursive processing as possible within the init (initialise?) function.
Notice the types of init:X — X Ù Y and final:X Ù Y — Y, more complex than
the type of f.

(⁄p(x)

init(x) – ” k(x) , (x) ’

final(”a , b’) – h(f(a) , b)

x

k

f

h

y

(a) (b)

Figure 4.12

Recursion Removal 239

and again,

(⁄p(x) ⁄p(k(x))) x

k

h

k

f

h

y

Figure 4.13

With the associativity of h (see Figure 4.14), this can be restructured to give Figure
4.15. Now we can re-introduce init and final, and introduce the new function
change to cope with the intermediate calculation.

Writing down the function change (of type X Ù Y — X Ù Y) from the diagram
(in Figure 4.15) we have:

change(”a,b’) –” k(a) , h((a), b) ’

240 Constructing Correct Software

(⁄p(x) ⁄p(k(x))) x

k

h

k

f

h

y

Figure 4.14

init

change

final

(b)(a)

(⁄p(x) ⁄p(k(x))) x

k

h

k

f

h

y

Figure 4.15

We can now use this new function, together with init and final, and the
associativity of h, to extract a tail-recursive function (but it is not f), which can
then be transformed into a while loop as before.

Recursion Removal 241

Recall f:X — Y , init:X — X Ù Y and final:X Ù Y — Y , so unfolding and
folding as appropriate, we get

f(x) ¢ if p(x)
then g(x)
else final(init(x))
fi

where: final(”a,b’)
¢

h(f(a), b)
¢

h(if p(a)
then g(a)
else final(init(a))
fi) , b)

¢
h(if p(a)

then g(a)
else h(f(k(a)), (a))
fi , b)

¢
if p(a)
then h(g(a), b)
else h(h(f(k(a)), (a)), b)
fi

¢ h is associative
if p(a)
then h(g(a), b)
else h(f(k(a)), h((a), b))
fi

¢
if p(a)
then h(g(a), b)
else final(k(a), h((a), b))
fi

¢
if p(a)
then h(g(a), b)
else final(change(”a, b’))
fi

242 Constructing Correct Software

So
final(”a,b’) ¢ if p(a)

then h(g(a), b)
else final(change(”a, b’))
fi

This is tail recursion. It converges (terminates, exits) since

(⁄p(a)) change(”a,b’¢ ” k(a), h((a), b) ’

and in a finite number of moves k reduces its parameter value ‘a’ to a situation
where p(a) is True.

The function final, and delivery of its result to y, can be transformed directly into

while ⁄p(a)
do ”a, b’ æ change(”a, b’) od;

y æ h(g(a),b)

So the full iterative scheme for the calculation of f and its delivery is

if p(x)
then y æ g(x)
else begin var a:X,b:Y;

”a, b’ æ init(x);
while ⁄p(a)

do ”a, b’ æ change(”a, b’) od;
y æ h(g(a), b)

end
fi

or, without the newly defined functions,

if p(x)
then y æ g(x)
else begin var a:X,b:Y;

”a, b’ æ ”k(x), (x)’;
while ⁄p(a)

do ”a, b’ æ ” k(a) , h((a), b) ’ od;
y æ h(g(a), b)

end
fi

Recursion Removal 243

The (parameterised) rule12 is therefore

(¬X::Type,Y::Type)
 (¬f:X—Y) (¬p:X—) (¬g:X—Y) (¬k:X — X) (¬ :X — Y) (¬h:YÙY — Y)

 (∀x:X) (f(x) = if p(x) then g(x) else h(f(k(x)), (x)) fi)
 (∀a,b,c:Y) (h(a, h(b, c)) = h(h(a,b), c)

 (∀x:X) (∃n:) (p(kn(x)))

y æ f(x) ¢ begin if p(x)
then y æ g(x)
else begin var a:X,b:Y;

”a,b’ æ ”k(x), (x)’;
while ⁄p(a)
 do ”a,b’ æ ” k(a), h((a),b) ’ od;
y æ h(g(a),b)
end

fi
end

The recursive definition of the factorial function is one which involves associative
recursion. Here we use it to show how the recursive version evaluates the product
from left to right, whereas the iterative version evaluates from right to left.

fact(x) – if x = 0
then 1
else mult(fact(x–1),x)
fi

For the recursive evaluation of fact(4), we have:

fact(4) ¢ fact(3) *4

¢ (fact(2) * 3) *4

¢ ((fact(1) *2) *3) *4

¢ (((fact(0) *1) *2) *3) *4

¢ (((1 * 1) *2) *3) *4

1 2 Assuming that f is total.

244 Constructing Correct Software

Pattern matching with the names given in the rule, we have

f – fact
p(x) – x = 0 i.e., p – ¬x.(x = 0)
g(x) – 1
k(x) – x–1

(x) – x
h(y1,y2) – y1*y2 i.e., mult(y1,y2)

Now substituting these into the recursion removal rule we get

begin if x = 0
then y æ 1
else begin var a: ,b: ;

”a, b’ æ ”x –1, x’;
while a ≠ 0

do ”a, b’ æ ” a–1 , a*b ’ od;
y æ 1*b
end

fi
end

This ‘executes’ to give

initial x is 4 (≠ 0, so)

a b
3 4
2 3*4
1 2 * (3 * 4)

 0 1 * (2 * (3 * 4))

and the final value of y is 1 * (1 * (2* (3 * 4)))

Clearly, the two expressions for the final value of y are equivalent, but only
because * is associative.

[Note that although this is a valid iterative scheme for the calculation of the
factorial function, it is not the only one. We have been ‘guided’ to this design by
the recursive structure of the specification. Starting from a more general
representation allows us to synthesise another design, as we shall see in Chapter 5.]

Recursion Removal 245

One variation on associative recursion (actually it is a special instance of it) is of
particular importance later. It is applicable when the associative function has an
identity element, which we shall call e. This then allows us to remove one
instance of the test in the iterative scheme and perform other simplifications to give

(¬X::Type,Y::Type)
 (¬f:X—Y) (¬p:X—) (¬g:X—Y) (¬k:X — X) (¬ :X — Y) (¬h:YÙY — Y)

 (∀x:X) (f(x) = if p(x) then g(x) else h(f(k(x)), (x)) fi)
 (∀a,b,c:Y) (h(a, h(b, c)) = h(h(a,b),c))
 (∃e:Y)(∀z:Y)(h(z,e) = z ¯ h(e,z) = z)

 (∀x:X) (∃n:) (p(kn(x)))

y æ f(x) ¢ begin var a:X,b:Y;
”a,b’ æ ”x,e’;
while ⁄p(a)

do ”a,b’ æ ” k(a), h((a),b) ’ od;
y æ h(g(a),b)

end

Although this text is not intended to concentrate on transformations per se, it is
instructive to see how the existence of the identity element e:Y (wrt h) gives rise to
this transformation, which is a simplification of the previous rule.

The derivation is as follows. Starting with the current form, we get the progression

 begin if p(x)
then y æ g(x)
else begin var a :X,b:Y;

”a,b’ æ ” k(x), (x) ’;
while ⁄p(a)

do ”a,b’ æ ” k(a) , h((a),b) ’ od;
y æ h(g(a),b)
end

fi
end

246 Constructing Correct Software

¢ g(x) ¢ h(g(x),e) and (x) ¢ h((x),e)

 begin if p(x)
then y æ h(g(x),e)
else begin var a :X,b:Y;

”a,b’ æ ” k(x), h((x),e) ’;
while ⁄p(a)

do ”a,b’ æ ” k(a) , h((a),b) ’ od;
y æ h(g(a),b)
end

fi
end

¢ widen the scope of a and b

 begin var a :X,b:Y;
if p(x)
then y æ h(g(x),e)
else

”a,b’ æ ” k(x), h((x),e) ’;
while ⁄p(a)

do ”a,b’ æ ” k(a) , h((a),b) ’ od;
y æ h(g(a),b)

fi
end

¢ promote (advance) assignments to a and b, and use them to achieve
common forms of expression assigned to y.

 begin var a :X,b:Y;
”a,b’ æ ”x,e’;
if p(a)
then y æ h(g(a),b)
else

”a,b’ æ ” k(a), h((a),b) ’;
while ⁄p(a)

do ”a,b’ æ ” k(a), h((a),b) ’ od;
y æ h(g(a),b)

fi
end

Recursion Removal 247

Now swap the branches of the if-then-else so as to give repeated conditions
¢ leading to the body of the while, and factor out the common trailing

command from both branches of if-then-else.

 begin var a :X,b:Y;
”a,b’ æ ”x,e’;
if ⁄p(a)
then

”a,b’ æ ” k(a), h((a),b) ’;
while ⁄p(a)

do ”a,b’ æ ” k(a),h((a),b) ’ od
else skip
fi;
y æ h(g(a),b)

end

¢ Next combine the sequencing (‘;’) and the while to give

 begin var a :X,b:Y;
”a,b’ æ ”x,e’;
if ⁄p(a)
then

repeat ”a,b’ æ ” k(a),h((a), b) ’
until p(a)

else skip
fi;
y æ h(g(a),b)

end

¢ Finally combine the if ... then ... else ... fi and the repeat to give

 begin var a :X,b:Y;
”a,b’ æ ”x,e’;

while ⁄p(a)
do ”a,b’ æ ” k(a),h((a),b) ’ od

y æ h(g(a),b)
end

248 Constructing Correct Software

4.3 Up and Down Iteration

Tail-recursive functions effectively work by ‘counting down’ until we reach some
small value for which the function can be evaluated directly. So, for instance, we
might perform some calculation on a list and ‘reduce’ the current operand value
until we reach the empty list or a singleton. Notice that in such cases we could not
construct longer lists from smaller ones, and hence certain calculations have to be
computed in this way.

Others may be computed in the reverse direction, and for some functions we have a
choice. In Section 3.3, we admitted the possibility (either via ‘eureka’ inspiration
or by the use of induction) of functions defined by rules of the form

(n = 0) f(n) ¢ a
(n > 0) f(n) ¢ g(f(n – 1))

where f: — X and g:X — X.

Clearly, with sufficient ‘space’, f is computable for any value of ; but it is not
tail-recursive, and g is not associative (it is of the wrong type for us even to
consider the possibility). But, f can be calculated iteratively. We demonstrate how
to do this (and hence present another recursive-to-iterative transformation rule). We
do this directly rather than trying to derive some other, related, tail-recursive
function.

Our justification is based on the sequence of values

a, g(a), g2(a), g3(a), g4(a), ... , gm(a), ...

Then f(n) = gn(a)

(and f(0) = g0(a) = a using the usual notation).

So, starting with a and applying g to it n times, we get the required result. This
immediately gives the design:

y æ f(n)
¢
 begin var v :X,m: ;

”v,m’ æ ”a, 0’;
while m < n

do ”v,m’ æ ”g(v), m + 1’ od;
y æ v

end

Recursion Removal 249

Either by initialisation or by subsequent iteration, after every assignment to v and
m the property v = gm(a) holds (this is a loop invariant), and the value of n – m is
reduced by 1. Of course, when n = m , then v = gn(a) (i.e., f(n)), which is then
assigned to y. These facts are a specific instance of what has to be deduced when we
seek to verify loops directly. Here the construction is straightforward and simple;
in general this is certainly not the case.

So, we have a mechanism for ‘counting up’ to the required operand value, n. We
shall take this as another ‘rule’. Its formal proof involves arguments about state
changes, which we are striving to avoid. The reader who is concerned about this
apparent flaw in our logic is invited either to regard this simply as another ‘given’
rule or to delay using it until (much) later.

[To obtain the loop invariant introduced in Section 2.6, we need to add (more
properly, to retain) a little more information. Recall that upon exit from the loop
we must reach a state that, together with the state values on loop entry, satisfies the
appropriate post-condition. The link between these two invariants is the Boolean
exit condition, and the fact that we are, in this instance, counting up using the
variable m. We have

invar(”v, m’) – v = gm(a) ¯ m≤n.

Initially
”v, m’ = ”a, 0’

so
v = g0(a) = a ¯ 0≤n .

On loop exit

⁄(m < n) and, since m was incremented by 1 on each iteration, we know
that m=n, and therefore

y = v = gn(a) = f(n)

Hence

post-f(”n,y’) ¢ y = f(n) and the result is correct.

In general, we want to find ‘invar’ given the post-condition and information about
the ‘counter’. The technique used here is sometimes referred to as ‘replacing a
constant (here, n) with a variable (here, m)’. Details are perhaps better considered
not in general but with respect to each problem in isolation, following the
inspiration that suggested the ‘eureka’ idea.]

[Also in the above scheme, the quantity v may be regarded as the ‘result_so_far’ and
m as pertaining to the ‘data_remaining’. This is a form which, either directly or in

250 Constructing Correct Software

some slight variant, will often be seen in the sequel. Elsewhere it is known as
‘signature rotation’; we change the signature of the original calculation,
X — Y, into X Ù Y — X Ù Y with, where possible (i.e., when such a rotation
can usefully be applied), suitable initialisation of the Y field — from a trivial
version of the problem — and consequential extraction of the result from the final
value in this field. Typically, and of no mathematical significance, we may use
Y Ù X as above, which is similar in layout to the high-level form y æ f(x), so,
reading left to right, the result is set to a function of the input.]

Before going on, we give an alternative version of the same calculation which
‘counts down’.

Again
f(n) – if n = 0 then a

else g(f(n – 1)) fi

Adopting the notion of a recursive procedure from Section 3.3,

”x, y’ æ ”n, a’; proc_f; [result æ y]
where

proc_f – if x = 0 then skip
else ”x, y’ æ ”x – 1, g(y)’;

proc_f fi

We can then extract the rule

y æ f(n)
¢
 begin var x: ;

”x,y’ æ ”n,a’;
while x ≠ 0

do ”x,y’ æ ”x – 1, g(y)’ od
end

Here x decreases and y ‘accumulates’, so the invariant is slightly more complicated.

On the mth iteration of the while loop, we have

0 ≤ x ≤ n x + m = n y = gm(a)

Thus, when
m = 0 x = n y = a

and when
m = n x = 0 y = gn(a)

So, we can use 0 ≤ x ≤ n ¯ y = g(n – x)(a) as the loop invariant.

Recursion Removal 251

Now to another example.

Example 4.2 Recall the Fibonacci function fib: — discussed in example
3.16. It was defined inductively by the rules

fib(0) ¢ 1
fib(1) ¢ 1

(n >1) fib(n) ¢ fib(n–1) + fib(n–2)

and subsequently (when n >1) implemented using the functions

fib(n) – x + y where ”x,y’ = fib2(n)
where

fib2(n) – if n= 2 then ”1,1’
else update(fib2(n–1))

fi
with

update(”x, y’) – ”x + y, x’

The rules governing fib2 are

(n =2) fib2(n) ¢ ”1,1’
(n >2) fib2(n) ¢ update(fib2(n–1))

Hence (the form of rules for) fib2 is appropriate for this treatment and we can devise
a reasoned implementation counting upwards from 2. In the new implementation,
m is the counter and we work with the triple ”m, a,b’ for which a = fib(m – 1)
¯ b = fib(m –2) ¯ m ≤ n is the invariant. Check the extremal values of m = 2
and m=n.

Directly from the rules, we have

 begin var m,a,b,c,d: ;
”m,a,b’ æ ”2,1,1’;
while m < n

do ”m,a,b’ æ ”m + 1,c,d’
where: ”c,d’ = update(”a,b’)

od;
[result æ] ”a,b’

end

252 Constructing Correct Software

which simplifies on the removal (unfolding) of update to give:

 begin var m,a,b: ;
”m,a,b’ æ ”2,1,1’;
while m < n

do ”m,a,b’ æ ”m + 1,a + b,a’ od;
[result æ] ”a,b’

end

And repeating the previous evaluation (Example 3.16), we get the progression

”2,1,1’
”3,2,1’
”4,3,2’
”5,5,3’

The right-most pair ”5,3’ in the last triple is the value of fib2(5), from which we
can obtain the answer to the original calculation we sought, fib(5) = 5+3 = 8.

We can combine the code for fib2 within a routine for fib to give the following
code:

 begin var m,a,b: ;
if n < 2
then [result æ] 1
else ”m,a,b’ æ ”2,1,1’;

while m < n
do ”m,a,b’ æ ”m + 1,a + b,a’ od;

[result æ] a + b
fi

end

❑

Now to a more complex (certainly much more complex-looking) example, the
combined division_modulo function of Example 3.14.

Recursion Removal 253

Example 4.3 We restate the specification and the rules for the div_mod function.

div_mod: Ù — Ù
pre-div_mod(”n,d’) – True
post-div_mod(”n,d’,”q,r’) – n = q*d + r ¯ 0 ≤ r < n

and
(n < d) div_mod(n, d) ¢ ”0, n’
(n = d) div_mod(n,d) ¢ ”1, 0’
(n > d) div_mod(n,d) ¢ div_mod((n – d), d) + ”1,0’

First notice that since the ‘+’ operation on pairs is associative, we could use
associative recursion removal; however, we shall not do that here.

Notice also that the rules can be combined and simplified to give

(n < d) div_mod(n, d) ¢ ”0,n’
(n ≥ d) div_mod(n, d) ¢ div_mod((n – d), d) + ”1,0’

We now build a ‘counting up’ implementation using m to count from 0 in steps of
d until m + d > n; i.e, while m + d ≤ n. [We shall ignore r until we have the final
value for q.]

The counter, together with the results and the operand values, gives a rather
fearsome 5-tuple: ”m, n, d, q, r’. Even though the values of n and d never change,
we retain them so as to see how the working is carried through. We can sideline
them later. The invariant13 satisfied by a corresponding set of values is

m = q*d + r ¯ 0 = r ¯ m ≤ n

The initial 5-tuple is ”0, n, d, 0, 0’, and the invariant clearly holds for this. We
increment q as much as possible and then find the appropriate r.

From the ‘≥’ rule we get

(m + d ≥ d) div_mod(m + d, d) ¢ div_mod(m, d) + ”1, 0’
i.e.,

(m ≥ 0) div_mod(m + d, d) ¢ div_mod(m, d) + ”1, 0’

1 3 We did say that these invariants could get quite complex. Remember that attempting to construct
an iterative loop directly from a specification (and that requires that we find such invariants) was
rather difficult. Here at least we have some clues from the recursive version and the associated
rules.

254 Constructing Correct Software

Hence, if
div_mod(m, d) = ”q,r’

then
div_mod(m+d, d) = div_mod(m, d) + ”1,0’

= ”q,r’ + ”1,0’
= ”q+1,r’

So, providing that we stop when we should, each intermediate incremental step is
of the form

”m, n,d,q,r’ æ ”m+d,n,d,q+1,r’
 which preserves the invariant.

The difference between m and n (i.e., n – m) decreases until we can use the ‘n < d’
rule with n replaced by n – m:

((n – m)< d) div_mod((n – m), d) ¢ ”0, n – m’

This delivers the proper value for r, which added to m give n. But, in the same
move, r is set to n – m, and m is set to m + r (= m + (n – m) = n).
Then,

0 ≤ r = n – m < d

After executing the corresponding assignment, namely:

”m,n,d,q,r’ æ ”n,n,d,q,n– m’

we have

n = q*d + r ¯ 0 ≤ r < d (¯ m = n)

which is what is required of the complete calculation. Hence we have the code

div_mod(n, d) –
begin var m, q, r: ;

”m,n,d,q,r’ æ ”0,n,d,0,0’;
while m < n+d

do ”m,n,d,q,r’ æ ”m+d,n,d,q+1,r’ od;
”m,n,d,q,r’ æ ”n,n,d,q,n–m’;
[result æ] ”q,r’

end

Recursion Removal 255

which simplifies to

div_mod(n, d) –
 begin var m, q, r: ;

”m,q’ æ ”0,0’;
while m < n+ d

do ”m,q’ æ ”m+d,q+1’ od;
r æ n–m;
[result æ] ”q,r’

end

(Note that the final value of m is not required.)
❑

Notice that, in this case, we could also ‘count down’ to give the following code,
which we quote without any formal derivation:

div_mod(n, d) –
 begin var m, q, r: ;

”m,q’ æ ”n,0’;
while m ≥ d

do ”m,q’ æ ”m – d,q+1’ od;
r æ m;
[result æ] ”q,r’

end

Of course, counting up with m from 0 to n is the same as counting down from n to
0, so we should expect that there are going to be ways of relating these
computation schemes. That leads on to the fascinating topic of program
transformation; however, we shall not go very far down that path. We are merely
scratching the surface of the subject; our main aim is deriving one (any) iterative
scheme from a recursive one.

256 Constructing Correct Software

4.4 Speeding up Iterations

As noted on several occasions, the efficiency of a program is of secondary
importance to its correctness. However, following on from the previous examples
in this chapter (and rules from Examples 3.14 and 3.16), we take a quick look at
how faster iterative schemes may be constructed.

Recall that from the rules

(n< d) div_mod(n, d) ¢ ”0,n’
(n≥d) div_mod(n, d) ¢ div_mod((n–d), d) + ”1,0’

we can obtain the simplest(?) implementation of div_mod(n, d):

 begin var m, q, r: ;
”m,q’ æ ”n,0’;
while m ≥ d

do ”m, q’ æ ”m–d,q+1’ od;
r æ m;
[result æ] ”q,r’

end

But other rules can be derived. Suppose n ≥ 2*d.

Then,
(n ≥ 2*d) div_mod(n, d) ¢ div_mod((n–d), d) + ”1,0’

and, since n – d ≥ d
¢ div_mod(((n–d)–d), d) + ”1,0’

 + ”1,0’

¢ div_mod((n–2*d), d) + ”2,0’

So, we have another rule
(n ≥ 2*d) div_mod(n, d) ¢ div_mod((n–2*d), d) + ”2,0’

Plugging this into the implementation scheme gives

”m,q’ æ ”n,0’;
while m ≥ 2*d

do ”m,q’ æ ”m–2*d,q+2’ od;

r æ m;
[result æ] ”q,r’

But this is wrong since it can yield a remainder between d and 2*d. We need to

check whether further processing is necessary. This can be done in several ways,

Recursion Removal 257

one of which (which may not be the simplest but uses previous work, and can be
generalised) is

”m,q’ æ ”n,0’;
while m ≥ 2*d

do ”m,q’ æ ”m–2*d,q+2’ od;

while m≥d
do ”m,q’ æ ”m–d,q+1’ od;

r æ m;
[result æ] ”q,r’

in which the second loop iterates either once or not at all.

We shall not give any technical definitions of (computational) complexity but, to
indicate the kinds of gains made by this scheme, consider the number of
adjustments made to the value of q within the two schemes. For larger and larger
values of n, this number of assignments in the second version comes closer and
closer to being half of those in the first scheme.

Provided that we have adequate end sections for ensuring that the q is large enough
and r is within the right bounds, we can carry this idea further and have
implementations such as

”m,q’ æ ”n,0’;
while m ≥ 3*d

do ”m,q’ æ ”m–3*d,q+3’ od;

while m ≥ d
do ”m,q’ æ ”m–d,q+1’ od;

r æ m;
[result æ] ”q,r’

and

”m,q’ æ ”n,0’;
while m ≥ 5*d

do ”m,q’ æ ”m–5*d,q+5’ od;

while m ≥ 2*d

do ”m,q’ æ ”m–2*d,q+2’ od;

while m ≥ d
do ”m,q’ æ ”m–d,q+1’ od;

r æ m;
[result æ] ”q,r’

Notice that we do not need to revisit the question of rule validity (and hence the
correctness of our design). Essentially the working is the same except for using a
larger value in place of the original d, a multiple of d.

258 Constructing Correct Software

Notice also that with these — big step — designs we need to include a final loop to
ensure that the remainder is less than d (and hence the decrement in that loop is d,
1*d). To gain the maximum benefit from the initial loop (in which the decrement

is k*d), we require k to be as large as possible, but of course k depends on the input

value d.

(In reverse order) the step size – as a multiple of d – in a succession of loops might
be

1, 2, 3, 4, ... k for some k.
or

1, 2, 3, 5, 8, ... from the Fibonacci series!
or

1, 2, 4, 8, ...
i.e.,

20, 21, 22 ,23, ... 2k for some (other) k.

Moreover, using the last sequence and the largest possible value of k (such that
2k ≤ d) means that each of the ‘lower’ loops will be executed at most once.

Given some value d: , this initial value of k can be computed by

k æ 0;
while 2k+1*d < n do k æ k+1 od

Example 4.4 Let’s see how we can apply this idea to div_mod. First we need to
parameterize our div_mod function by k . We call this quick_div_mod and
abbreviate as QDM.

Its rules are as follows:

(n < d) QDM(n,d,k) ¢ ”0,n’

(n ≥ 2k*d) QDM(n,d,k) ¢ QDM(n–2k*d,d,k–1) + ”2k,0’

(n < 2k*d,k≠0) QDM(n,d,k) ¢ QDM(n,d,k–1)

Recursion Removal 259

To see how this works, consider the calculation of div_mod(121, 3):

k = 0 21*3 = 6 < 121

k = 1 22*3 = 12 < 121

k = 2 23*3 = 24 < 121

k = 3 24*3 = 48 < 121

k = 4 25*3 = 96 < 121

k = 5 26*3 = 192 ≥ 121

So we start the main calculation with k = 5,

QDM(121, 3, 5)
¢ (121 ≥ 25*3)

QDM(121 – 25*3, 3, 5–1) + ”25,0’

¢
QDM(121 – 96, 3, 5–1) + ”25,0’

¢
QDM(25, 3, 4) + ”32, 0’

¢ (25 < 24*3)

QDM(25, 3, 3) + ”32, 0’
¢ (25 ≥ 23*3)

QDM(25 – 23*3, 3, 2) + ”23,0’ + ”32, 0’

¢
QDM(1, 3, 2) + ”8, 0’ + ”32, 0’

¢ (1 < 22*3)

QDM(1, 3, 1) + ”8, 0’ + ”32, 0’
¢ (1 < 21*3)

QDM(1, 3, 0) + ”8, 0’ + ”32, 0’
¢ (1 < 3)

”0, 1’ + ” 8, 0’ + ” 32, 0’
¢

”40, 1’

and 121 ÷ 3 is 40 remainder 1, which is correct.

Intermediate working uses the 6-tuple ”m,n,d, k,q,r’, where k has been externally
declared and initialised and acts as a decreasing control variable, m is effectively the
‘data still to process’, n and d are the input values, and r collects the remaining
value of m.

260 Constructing Correct Software

On removing all the components which cause no changes, the main loop of our
calculation is

begin var m, q, r: ;
”m,q’ æ ”n,0’;
while k ≥ 0

do if m ≥ 2k*d then ”m,q’ æ ”m – 2k*d,q + 2k’ fi;

k æ k – 1
od;

r æ m;
[result æ] ”q,r’

end
❑

Example 4.5 Now back to the Fibonacci function, fib: — discussed in
Examples 3.16 and 4.2. For (n≥2) it was implemented by

fib(n) – x+y where: ”x,y’ = fib2(n–1)
and

fib2(n) – if n = 2 then ”1,1’
else update(fib2(n –1))

fi
and

update(”x, y’) –”x+y, x’

A possible iterative implementation of fib2(n) was

 begin var m,a,b,c,d: ;
”m,a,b’ æ ”2,1,1’;
while m ≤ n+1

do ”m,a,b’ æ ”m+1,c,d’
where: ”c,d’ = update(”a,b’)

od;
[result æ] ”a,b’

end

We also defined

up2 (i.e., up2 – update ° update
¢ (”x, y’)(”2*x + y, x + y’))

Recursion Removal 261

Thus, using up2 as much as possible and not letting the value of m overshoot n,
we have

 begin var m,a,b,c,d: ;
”m,a,b’ æ ”2,1,1’;
while m ≤ n +2

do ”m,a,b’ æ ”m+2,c,d’
where: ”c,d’ = up2(”a,b’)

od;
while m ≤ n+1

do ”m,a,b’ æ ”m+1,c,d’
where: ”c,d’ = update(”a,b’)

od;
[result æ] ”a,b’

end

Check that you understand the reasons for the bounding conditions on the two while
loops.

This simplifies to

begin var m,a,b: ;
”m,a,b’ æ ”2, 1,1’;
while m ≤ n+ 2

do ”m,a,b’ æ ”m+2,2*a+b,a+b’

od;
while m ≤ n+1

do ”m,a,b’ æ ”m+1,a+b,a’
od;

[result æ] ”a,b’
end

❑

4.5 Recursive Procedures
We have seen how certain recursive functions used within program derivation can be
realised as parameterless Procedures14. Here we shall apply some of the ‘recursion-
to-iteration’ technology developed for certain classes of functions to these
procedures. The first kind of procedure considered are those that are tail-recursive.
Having handled tail-recursive functions (and the link between a function call, which
is an expression, and an assignment command, which embodied such a call), the
corresponding transformation of procedures is very easy. As before, we work
backwards and justify the transformation by a sequence of equivalent flowcharts.
1 4 But only certain forms of parameterless procedures.

262 Constructing Correct Software

Consider the procedure p defined by

p – if b then q else r; p fi
where: b:State —
and p,q,r:State — State

It is reasonable to assume that p may be implemented by a while loop given by
the scheme

while ⁄b do r od; q

but we must check (justify) this assumption. We do this by collecting together the
progression of transformations given earlier. They are presented in Figure 4.16.

¢

b

p:

p

b
True

False
b

¢

q

True False

False

True

¢

b

b
True False

False

True

b
True False

q r

q r

q

rq

q r

r

Figure 4.16

Recursion Removal 263

Hence
p ¢ if b then q

else r; p fi
and the assumed realisation holds.

Therefore, we have the rule

p where: p – if b then q else r ; p fi
¢

while ⁄b do r od; q

The other form of (parameterless) recursive procedure that we shall consider again
follows from the ‘simple’ form given in Section 3.3.

Suppose now that

p – if b then q else r ; p; s fi

where: b:State —
and p,q,r,s:State — State

All terminating recursions (and those are the only ones in which we are interested)
give rise to calculations of the form

x Ÿ sn ° q ° rn(x) for some n: .

The two parts of the calculation that surround the recursive call (r and s) must be
repeated the same number of times. To facilitate this requirement, we introduce a
local counter, i. Using i, we can count up and then down as in the scheme

i æ 0; if b then q
else r ; i æ i+ 1; p; i æ i –1; s fi

¢
i æ 0; p

where: p ¢ if b then q
else r ; i æ i+ 1; p; i æ i –1; s fi

With this construction, the value of i when we reach the end is zero and has its
highest value when we execute q. So now we can split the entire calculation
approximately in half and, continuing to re-use names for related (but slightly
different) functions

264 Constructing Correct Software

¢
i æ 0; p; while i ≠ 0 do i æ i –1; s od

where: p ¢ if b then q
else r ; i æ i + 1; p fi

But now p is tail-recursive so, finally, we have

¢
i æ 0;
while ⁄b do r ; i æ i + 1 od;
q;
while i ≠ 0 do i æ i –1; s od

Summary We have studied the important phenomenon of tail recursion and the
commonly occurring ‘pattern’ of associative recursion. Most recursive designs can
be transformed into one of these two forms (and hence ultimately to tail recursion),
but the way this is achieved may not be easy to justify. However, such matters are
not our concern here. We have also seen how transformations can be used to speed
up the resultant iterative forms. Again this is not always easy but is consistent
with the philosophy of “get it right, and then make it fast”. Finally, we have
showed how certain notions from recursion can be applied to procedures rather than
functions.

Recursion Removal 265

Chapter 5
Quantifications

One criticism that has in the past been levelled at formal methods is that they are
difficult to scale up to large problems. Of course, some problems are more
complicated than others, but it is often the case that specifiers of software think in
terms of units which are too small. Many specifications can be expressed using big
data items but in a way that does not unduly constrain their subsequent refinement
down to an implementation. Using the constructions detailed in this chapter
requires you to view problems more abstractly, but they facilitate application of
powerful refinement rules which give shorter, more immediate, derivation
sequences. The price that must be paid for using these rules is that the designs
produced are constrained; they have a certain structure and may be less efficient (at
run time) than more tailored designs.

Most sets, relations and functions used to specify software and systems are not
defined explicitly, element by element, but are represented implicitly by means of
formulae — usually terms expressed as combinations of ‘variables’, or predicates
expressing selection criteria. This not only allows big sets to be represented in a
more compact fashion but can be very useful when synthesising software designs
(code!). We seek a more general, less biased, way of representing (derived) sets,
relations and functions.

Overtly logical specifications often don’t need recursion, but others do. We have
already seen the Fibonacci function, Fib: — , usually defined (inductively) by

Fib(0) – 1
Fib(1) – 1
Fib(n + 2) – Fib(n) + Fib(n + 1) for values of n ≥ 0.

Some would say that this function was inherently recursive. Perhaps it is, but
other functions can easily be represented in other ways. These can be regarded either
as non-recursive or as (implicitly) very recursive — you will see later what we
mean. It is also important to recognise the connection between the structure of data
and the structure of associated ‘standard’ program designs. They are not the same

(they can’t be) but they are related.

5.0 Overview

In Section 5.1, we look at more ways of defining composite values (sets, etc.), and
then, in Section 5.2, we consider how more complicated values may be
derived using 1-place and 2-place functions (and hidden away in here we have the
operations known elsewhere as quantifiers or quantifications). It turns out that
certain of these constructions are particularly useful in program development
because they map directly onto the design structures encountered in Section 3.2.3.1.
We look at these in Section 5.3. Then, somewhat retrospectively, in Section 5.4
we look at manipulation rules for quantifications. These include rules for
manipulating ‘for all’ and ‘there exists’. They complement the rules introduced in
Chapter 1 and are given more fully in the Appendix.

5.1 Defining Composite Values

Where we cannot, or do not wish to, write a set explicitly by giving all its
elements in a display like

{ , , , , ... , }

we may be able to stipulate how to generate the elements from a ‘term’ by
evaluating it for all values of certain variables that satisfy a given condition. We
shall develop an extended and more general notation through a sequence of
examples.

First we consider the expression { n | n: | (1 < n ≤ 5) ˘ (10 ≤ n ≤ 12) }

This represents the set of all natural numbers n for which the predicate

(1 < n ≤ 5) ˘ (10 ≤ n ≤ 12) holds,

and is the same as

{ 2,3,4,5,10,11,12 }

The symbolic representations are not unique and may be abbreviated.

So { n | n: | 1 ≤ n ≤ 4 }
¢

{ n: | 1 ≤ n ≤ 4 }
¢

{ n:1..4 }
¢

1..4

268 Constructing Correct Software

Similarly,
{ n | n: | (∃m:)(n = 2*m) }

¢
{ n: | (∃m:)(n = 2*m) }

— the set of even natural numbers

and { n2 | n: | True }
¢

{ n2 | n: }
— the set of square naturals

and { n + n2 | n: }
¢

{ 2,6,12,20,.... }

The general form is

{ term (using variables) | variable names and types
| condition (using variables) }

read as
the set of all ... where ... and

If the term is a single variable and/or the condition is ‘True’, then these components
and the associated ‘|’ may be omitted as in the examples.

But what about

{ n2 | n: | –3 ≤ n ≤ 3 } ?

This generates the set
{ 0,1,4,9 }

If we require duplicate entries — caused by the term giving the same answer for two
or more values of n which satisfy the condition — then we must use bags. The
notation extends in the expected way.

Ê n2 | n: | –3 ≤ n ≤ 3 Á
¢

Ê 9,4,1,0,1,4,9 Á
¢

Ê 0,1,1,4,4,9,9 Á

Quantification 269

So,
Ê term | variables | condition Á

is the bag of values obtained by
evaluating the term for all values of the quoted (bound) variables for which the
condition holds. In general, the term and the condition will be expressions that
involve the quoted variables, but other (free) variables may be included, and the
bound variables need not occur in the term or condition. Certain constraints must
be imposed on the components of this construction to ensure that its evaluation is
finite, but more on this later.

5.2 Derived Composite Values

New sets and bags, and lists, can be generated from existing ones by means of
functions and algebraic operations (which we shall often write as functions so as
not to require extra notation). There are two major ways in which this is done.

5.2.1 1-place Functions

Suppose f:X—Y is a function and S: (X) is a set. We define a new function,
set-f, so that

set-f : (X) — (Y) and set-f(S) – { f(x) | x:X | x˜S }

set-f simply applies the function f to each element of the set. Of course, the set
used here, S, has nothing to do with the definition of set-f, so we should more
properly write

set-f – (¬S: (X)) ({ f(x) | x:X | x˜S }).

So, if f :xŸx2, X – and V – 1..4

then, set-f(V) ¢ (¬S: (X)) ({ f(x) | x:X | x˜S }) (V)
¢ { f(x) | x:X | x˜V }
¢ { f(x) | x:X | x˜1..4 }
¢ { f(1), f(2), f(3), f(4) }
¢ { 1,4,9,16 }

And notice that if T – –4 .. + 4

then, set-f(T) ¢ { 0,1,4,9,16 }.

270 Constructing Correct Software

We have the same ‘problem’ as before, but this is circumvented by using

bag-f – (¬S: (X)) (Ê f(x) | x:X | x˜S Á)
so

bag-f(T) ¢ Ê 16, 9, 4, 1, 0, 1, 4, 9, 16 Á

Note that, if no confusion arises, the name f may be used in place of set-f or bag-f.
Then the interpretation of f(A) depends on the type of A.

We can apply the same construction to other structured collections of data, but only
lists will be considered here. The idea is again simple: just apply the function to
each element in the list to obtain a list of results (in the corresponding order).
Instead of defining the new function directly, we define it axiomatically.

If f:X—Y then list-f:X*—Y*, so that

list-f(”’) ¢ ”’
list-f(”x’) ¢ ”f(x)’

and list-f(L1»L2) ¢ list-f(L1)»list-f(L2)

Hence, using the same function f:xŸx2

list-f(”1,2,3’) ¢ ” 12, 22, 32 ’
¢ ” 1, 4, 9 ’

‘list-f ’ can also be written as f* (or, when the lists are non-empty, as f+), so that if

we have h:X — Y, then it follows1 that h*:X* — Y* and h+:X+ — Y+.

Notice that the rule
list-f(L1»L2) ¢ list-f(L1)»list-f(L2)

 fits directly with the structural
decomposition tactic and gives the familiar data-flow diagram in Figure 5.1. This
is the real motivation for making this sideways (or even backward) move to link
specifications and ‘devide and conquer’ design strategies. Notice the relationship
between the ‘split’ and ‘combine’ phases in the designs that follow, namely a
reverse » and a forward ».

1 This notation is not accidental but reflects the common usage of superscript + and * in theoretical
Computer Science.

Quantification 271

L1»L2

L1 L2

M1»M2 ¢ g*(L1»L2)

M2M1

g*g*

»

»

‘backwards’

Figure 5.1

A less obvious but perhaps potentially more useful example is:

f1: — f1:zŸ(z is_odd)

then f1*(”1..4’)

¢
f1*(”1,2,3,4’)

¢
”True,False,True,False’

When a function of type X— Y is applied to a list of type X*, the resultant
operation is often called a mapping2 — it translates, it ‘maps’, the X elements to Y
elements (and of course X and Y may or may not be the same!).

5.2.2 2-place Functions

A more important situation occurs when we wish to combine the elements in a set,
say of type (X), to give a result of type X. This is potentially very powerful
but, in contrast to the above situation we cannot use just any function of the
appropriate type; the functions must satisfy certain conditions. We explain the need
for these conditions by considering a simple example.

2 This is another instance of an over-worked word. Be careful: the word ‘mapping’ is also used for
a total function (i.e., a function having the pre-condition True).

272 Constructing Correct Software

We wish to add together all the elements of a finite set of integers. Instead of using
the addition operator directly, we name the function plus, simply to assist with the
naming of the induced functions.

Let
plus: Ù —
plus: ”x,y’ Ÿ x+y

Now if S – {a,b,c,d}: (),
we want to define set-plus so that

set-plus(S) ¢ a+b+c+d.

Set-plus is to be a function (of type () —). The order in which the elements
of the set are presented and the order in which we perform the operation (here,
addition) must not affect the result. Hence we require properties (i) and (ii):

(i) ((a + b) + c) + d
¢

(a + (b + c)) + d etc.

We require that the order of calculation does not affect the result. So plus must be
associative .

i.e., plus(plus(x,y),z) ¢ plus(x,plus(y,z))

(ii) Since the elements of a set need not be considered in any specific order, we also
need plus to be commutative;

i.e., plus(x,y) ¢ plus(y,x)

So the order in which the elements is presented does not affect the calculation.
and, finally, we require that

(iii) because we may wish to apply this to an empty data set,

set-plus(Ø) ¢ 0

where 0 is the identity for plus, i.e., (∀x:) plus(x,0) = x .

With these properties, plus is called a quantifier.

Quantification 273

Using plus (and set-plus, and 0) as our model, the properties which give an
axiomatic definition of set-plus are as follows:

set-plus(Ø) ¢ 0
set-plus({x}) ¢ x

plus(set-plus(SËT), set-plus(SflT)) ¢ plus(set-plus(S), set-plus(T))

The last rule looks rather complex, but with S–{2,3,4} and T–{2,3,5} all it
amounts to is

14 + 5 = 9 + 10

If SflT=Ø, then this rule becomes more useful. Hence, as a conditional rule, we
have

(SflT=Ø) set-plus(SËT) ¢ plus(set-plus(S), set-plus(T))

Diagrammatically, we have the familiar shape shown in Figure 5.1.

SËT

S T

set-plus

Ë
‘backwards’

set-plus

plus

s t

s + t

(SflT ≠ Ø)

 Figure 5.2

With bags, the situation is slightly different (and always simpler)

bag-plus(Ø) ¢ 0
bag-plus(ÊxÁ) ¢ x

bag-plus(SÈT) ¢ plus(bag-plus(S), bag-plus(T))

 — when two bags are united (È’ed), there is no loss of data values.

Again notice the ‘shape’ of the last unconditional rule (as shown in Figure 5.3).

274 Constructing Correct Software

SÈT

S T

bag-plus

È
‘backwards’

bag-plus

plus

s + t

s t

Figure 5.3

Here, split and combine are not the same operation (once forward and once in
reverse), but the split is derived automatically and the combine operation is related
to the overall operation (here bag-plus) in a systematic way.

This is sufficiently important to give rise to new notation.

bag-plus(Êx | x: | x˜SÁ)
is written

(plus x | x: | x˜S)

This notation is inspired by the ‘linearisation’ of x2

1≤x≤n

We start with

(x2 where 1 ≤ x ≤ n)
where x is local, and we include a local declaration of its type

(x2 | x: where 1 ≤ x ≤ n)
then get rid of the symbol, which is really addition, to give3

(+ x2 | x: where 1 ≤ x ≤ n)
and finally tidy up the syntax by removing the word ‘where’

(+ x2 | x: | 1 ≤ x ≤ n)

This is (intentionally) similar to the extended set and bag notations used earlier.

3 We use the infix operator symbol as a prefix. Binary function names will similarly be used as
unary indications of induced bag operations — quantifiers.

Quantification 275

As might be expected, there is a list version of this construction. Again we use
plus as the basic example. The list version will be called plus*. Notice that there
can be no possibility of confusing this with the earlier definition of f*. In that
situation, f was a monadic function — it acted upon a single input value. Here

plus is diadic, its type being Ù — , and the + ‘decoration’ can be used in

cases where inputs are restricted to being non-empty.

Again we can characterise plus*: * — axiomatically:

plus*(”’) ¢ 0
plus*(”x’) ¢ x

plus*(L»M) ¢ plus(plus*(L),plus*(M))

Notice that from the third rule we can infer that plus must be associative. This
follows automatically since

plus(plus(a, b),c) ¢ plus(plus(plus*(”a’), plus*(”b’)),plus*(”c’))
¢ plus(plus*(”a, b’), plus*(”c’))
¢ plus*(”a, b’»”c’)
¢ plus*(”a, b, c’)
¢ plus*(”a’»”b, c’)
¢ plus(plus*(”a’), plus*(”b, c’))
¢ plus(plus*(”a’), plus(plus*(”b’), plus*(”c’)))
¢ plus(a, plus(b, c))

Hence, plus is associative and we get the same answer (as we should) regardless of
how this list is split. Working in the opposite direction, we demonstrate this in
the case of non-trivial splitting.

Consider the list L»M»N , where L , M , N are non-empty, and suppose that
plus*(L) ¢ and plus*(M) ¢ m and plus*(N) ¢ n.

Then
plus*((L»M)»N) ¢ plus(plus*(L»M), plus*(N))

¢ plus(plus(plus*(L), plus*(M)), plus*(N))
¢ plus(plus(, m), n)
¢ plus(, plus(m, n))
¢ plus(plus*(L), plus(plus*(M), plus*(N))
¢ plus(plus*(L), plus*(M»N))
¢ plus*(L»(M»N))

276 Constructing Correct Software

Obviously, this can also be deduced, directly and simply, from the associativity of
the concatenation operator on lists ((L»M)»N ¢ L»(M»N)), so the upshot is
that the output can be decomposed in exactly the same way as the input.

Abstracting from this example, the rules for g* (generated from an associative
function g:XÙX —X) with identity e are

g*(”’) ¢ e where (∀x:X) (g(x,e) = x ¯ g(e,x) = x)
g*(”x’) ¢ x

g*(L»M) ¢ g(g*(L),g*(M))

Notice also that if we have a situation in which empty lists are not sensible (e.g.,
max — you cannot find the maximal element of an empty list of integers!) then we

would use the notation g+, based on g:XÙX — X and here, of course, we don’t
need to pay heed to any ‘empty list’ rule.

Now we can use quantifiers and induced list operations to give more abstract (and
non-recursive?) specifications of familiar calculations. Remember that the way
recursion is included in a specification biases the design.

So, for example,

fact(n) – mult+(<1..n>)
¢ (mult i | i: | 1 ≤ i ≤ n) where mult(x,y) – x * y

We can also use induced operations to give unbiased definitions of other common
functions which hitherto have had to be characterised axiomatically or by means of
recursion, so

#(S) – (+1 | i:X | i∈S) where S: (X)
and

#(L) – (+1 | L1,L2:X*, x:X | L = L1»”x’»L2) where L:X*.

Try these on small values of S and L.

5.3 Application to Program Development

So, if we can manipulate a given specification (post-condition) into the form of a

quantifier or a * or + function (perhaps with additional pre- and post-processing
functions), we can routinely and quickly extract a correct ‘divide and conquer’
design. Of course, since many intermediate stages are combined (and hidden),
alternative variations are denied to the programmer, and the possible forms of
program that result are restricted. [See, for example, the sorting program design in

Quantification 277

Section 7.4.] That is the price that must be paid for using ‘big’ transformation
rules. The derived form of program may be susceptible to further (code level)
transformations, but these cannot reverse any strict refinements (reductions) made
earlier in the program synthesis.

5.3.1 1-place Functions

Recall the recursion removal rule which utilises an associative combination
function with an identity element:

(¬X::Type,Y::Type)
 (¬f:X—Y) (¬p:X—) (¬g:X—Y) (¬k:X — X) (¬ :X — Y) (¬h:YÙY — Y)

 (∀x:X)(f(x) = if p(x) then g(x) else h(f(k(x)), (x)) fi)
 (∀a,b,c:Y) (h(a,h(b,c)) = h(h(a,b),c)
 (∃e:Y)(∀y:Y)(h(y,e) = y ¯ h(e,y) = y)

 (∃n:) (p(kn(x)))

y æ f(x) ¢ begin var a:X,b:Y;
”a,b’ æ ”x,e’;
while ⁄p(a)

do ”a,b’ æ ” k(a), h((a),b) ’ od;
y æ h(g(a),b)

end

We seek to employ this rule to derive a more specialised rule for the computation of
F*:X* — Y* (say), where F:X — Y (so F is monadic).

From the required identities for induced functions, we know that

F*(”’) ¢ ”’
 F*(”x’) ¢ ”F(x)’
F*(L»M) ¢ F*(L) »F*(M).

Now, arbitrarily opting to process lists from left to right,

if L ≠ ”’ then F*(L) ¢ F*(”first_of(L)’) » F*(rest_of(L))
¢”F(first_of(L))’ » F*(rest_of(L))

so, pattern matching with the general rule, we need to replace

X by X*
Y by Y*
f by F*

278 Constructing Correct Software

p(x) by x = ”’
g(x) by ”’

(x) by ”F(first_of(x))’
h(x,y)4 by y»x
k(x) by rest_of(x)

and hence e by ”’

to give

y æ F*(x) ¢ begin var a:X*,b:Y*;
”a,b’ æ ”x,”’’;
while a ≠ ”’

do ”a,b’ æ ” rest_of(a), b»”F(first_of(a))’ ’ od;
y æ b

end

The fully parameterised version is

(¬X::Type,Y::Type)
 (¬F:X—Y)
 (F*(”’) = ”’)

(∀x:X) (F*(”x’) = ”F(x)’
(∀L,M:X*) (F*(L»M) = F*(L) »F*(M).

M æ F*(L) ¢ begin var N:X*,P:Y*;
”N,P’ æ ”L,”’’;
while N ≠ ”’

do ”N,P’ æ ” rest_of(N), P»”F(first_of(N))’ ’ od;
M æ P

end

So, given a specification/design of a function in the form of an F* function induced
from a monadic function F, there is a simple implementation derived by application
of a single rule. Of course, another implementation which works from right to left
can similarly be derived from a rule which embodies the front_of and last_of
functions.

4 Notice that if we had a function q where q(x,y) – h(y,x) and h was associative, then q would also
be associative. Check this.

Quantification 279

5.3.2 2-place Functions

Following similar substitutions into the general scheme, we can obtain an
implementation rule for the calculation of G*:X* — X, where G:X2 — X is an
associative function with (a two-sided5) identity element e. The rules applicable to
G* are

 G*(”’) ¢ e
G*(”x’) ¢ x

G*(L»M) ¢ G(G*(L), G*(M)).

Again forcing a left-to-right evaluation regime, we get

(L ≠ ”’) G*(L) ¢ G(G*(”first_of(L)’), G*(rest_of(L)))
¢ G(first_of(L), G*(rest_of(L))).

Hence we require the (parallel) substitutions to replace

X by X*
Y by X
f by G*
p(x) by x = ”’

(x) by first_of(x)
h(x,y) by G(y, x)
k(x) by rest_of(x)

and g(”’) by e

to give

y æ G*(x) ¢ begin var a:X*,b:X;
”a,b’ æ ”x,e’;
while a ≠ ”’

do ”a,b’ æ ” rest_of(a), G(b, first_of(a))’ od;
y æ b

end

5 That is, (∀y:X)(G(y,e) = y ¯ G(e,y) = y).

280 Constructing Correct Software

The fully parameterised version is

(¬X::Type)
 (¬G:X2—X)
 (∀a,b,c:X) (G(a, G(b, c)) = G(G(a,b), c)
 (∃e:X)(∀y:X)(G(y,e) = y ¯ G(e,y) = y)
 (G*(”’) = e)

(∀x:X) (G*(”x’) = x
(∀L,M:X*) (G*(L»M) = G(G*(L), G*(M)).

y æ G*(L) ¢ begin var N:X*,b:X;
”N,b’ æ ”L,e’;
while N ≠ ”’

do ”N,b’ æ ” rest_of(N), G(b, first_of(N))’ ’ od;
y æ b

end

Recall the listmax function studied extensively in Chapter 3. Although this
function cannot be applied to the empty list, similar processing can be used to give
an implementation design very quickly.

Notice that

listmax(L: +) ¢ (max+(x) | x: | x in L)
listmax(”a’) ¢ a

and
listmax(”a, b’) ¢ if a<b then b else a fi

¢ max(a, b).

Even though max is associative (and commutative), it has no identity element, so
the derivation given above cannot be used, but the same ideas are applicable. Before
studying the next section, try to justify the following replacement based on left-to-
right evaluation.

y æ listmax(L) ¢ begin var N: *, v: ;
v æ first_of(L); N æ rest_of(L);
while N ≠ ”’

do ”N, v’ æ ”rest_of(N), max(v, first_of(N))’ od;
y æ v

end

Quantification 281

5.3.3 An Extended Example: The Factorial Function

Although it might seem surprising that we use this example, it is in keeping with
our aim of focusing on techniques applied to familiar and well-understood problems,
rather that having to spend time explaining the problem.

The factorial function has been the butt of recursive ridicule ever since stacks were
invented. Nevertheless, it is well-known and a useful example. We shall use it to
demonstrate the derivation of three designs. Moreover, we shall intentionally not
make use of all the properties of multiplication and hence increase the utility of the
underlying transformations. Additionally, we use The factorial function as another
illustration of how to work out some of the details from scratch rather than simply
quoting powerful high-level rules. The mathematical manipulations are illustrated
in part by data-flow diagrams (DFDs).

For n:

(we exclude fact(0), which must be equal to 1 because 1 is the multiplicative
identity and 0 is associated with an empty data list — see below. But it is not
always easy to convince readers about this, even mathematicians; so we avoid
having 0 as a legitimate input.)

fact(n) – 1*2*...*n

‘*’ is a quantifier (being associative, commutative and having 1 as identity) so we
can write

fact(n) – (*i | i: | 1 ≤ i ≤ n)

or, to avoid using the prefix ‘*’ symbol for multiplication, we introduce the name
mult, so

fact(n) – (mult i | i:1..n)

Subsequently, we shall only use the associativity of mult, which is of type

2 — (i.e., two natural numbers in and one out)

Partly for emphasis and partly because it is very useful, we introduce an induced list
operation

mult+: + —

Remember, + is the set/type/class of non-empty lists of naturals.

282 Constructing Correct Software

We are going to calculate fact(n) by explicit multiplication of numbers in the list

”1,2, ... ,n’ so fact(n) ¢ mult+(”1,2, ... ,n’)

and mult+ obeys the following rules:

mult+(”x’) ¢ x

mult+(L1»L2) ¢ mult(mult+(L1) , mult+(L2)) where L1,L2: +

The general ‘divide and conquer’ strategy applied to this problem yields the DFD in
Figure 5.4,

split

mult+ mult+

mult

L: + (#L > 1)

L2: +L1: +

Figure 5.4

with split: + — + Ù + and split(L) = ”L1,L2’, where L = L1»L2

Notice that split is non-deterministic; lots of different implementations are
possible, and we shall use three of them. Recall that, when n>1,

fact(n) ¢ mult+(”1,2, ... ,n’) ¢ mult+(”1..n’)

Now take a software engineering decision and particularise (refine!!) split to be
split_left, so

split_left(”1..n’) – (”1’,”2..n’)

Quantification 283

(We do this now rather than later purely as an illustration. It would in general be
much more desirable to defer such decisions for as long as possible so as to retain
the non-determinism and allow choices to be made later.) Using split_left, the full

DFD for mult+(”1..4’) is as in Figure 5.5.

”1..4’

split_left

mult

mult+

split_left

split_left

mult+

mult+

mult+ mult

mult

”2..4’

”3..4’

”4’”3’

”1’

”2’

43

122

24

24

1

Figure 5.5

The order of evaluation suggested in Figure 5.5 is essentially deterministic, the

only variability being the order of executing the four mult+ operations, each of
which does no more than extract the integer x from the list ”x’. However, since
mult is associative, we can ‘change the plumbing’. Moreover, by staggering the

order of evaluation of the mult+ operations, so as to derive 1, from ”1’, before
splitting ”2..4’, we get the DFD in Figure 5.6.

Now we express this mathematically and use it to calculate an iterative program
design. In outline, this goes as follows:

mult+(L)¢ if #L =1 then first_of(L)

else mult(first_of(L), mult+(rest_of(L)))
fi

284 Constructing Correct Software

”1..4’

”2..4’

”3..4’”2’

”4’”3’

”1’

4

32

1

6

24

2

Figure 5.6

We now introduce a new function based on the ‘else’ branch of the current
expression.

Let finish_1(x: ,y: +) – mult(x,mult+(y))

so

mult+(L)¢ if #L =1 then first_of(L)
else finish_1(first_of(L), rest_of(L))

fi

From this definition of finish_1, we can proceed as follows.

If #y = 1, then y ¢ ”v’ for some v: , so

finish_1(x,y) ¢ mult(x,mult+(y))

¢ mult(x,mult+(”v’))
¢ mult(x,v)
¢ mult(x,first_of(y))

Quantification 285

If #y > 1, then y ¢ ”v’»w for some v: ,w: + so

finish_1(x,y) ¢ mult(x,mult+(y))

¢ mult(x,mult+(”v’»w))

¢ mult(x, mult(mult+(”v’),mult+(w)))

¢ mult(x, mult(v,mult+(w)))

¢ mult(mult(x,v), mult+(w))

¢ mult(mult(x,first_of(y)), mult+(rest_of(y)))
¢ finish_1(mult(x,first_of(y)), rest_of(y))

which gives

finish_1(x,y) ¢ if #y = 1
then mult(x,first_of(y))
else finish_1(mult(x,first_of(y)), rest_of(y))
fi

 and this converges using #y – 1 as a measure.

This is tail recursion, so we can apply a standard rule to restructure the calculation
into the iterative form.

begin var u: , v: +;
”u,v’ æ ”x,y’;
while #v ≠ 1

do ”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’
od;

mult(u,first_of(v))
end

Now, substituting back in mult+(L) and simplifying, using the programming
language rules (such as ‘loop pull back’ — see Section A.5 in the Appendix), we
have:

mult+(L)¢ if #L =1 then first_of(L)

else mult(first_of(L), mult+(rest_of(L)))
fi

¢ if #L =1 then first_of(L)
else finish_1(first_of(L),rest_of(L))

fi

286 Constructing Correct Software

¢

begin var u: , v: +;
[result æ] if #L =1 then first_of(L)

else
”u,v’ æ ”first_of(L), rest_of(L’;
while #v ≠ 1

do ”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’
od;

mult(u,first_of(v))
fi

end

¢

begin var u: , v: +;
[result æ] if #L =1 then first_of(L)

else
”u,v’ æ ”first_of(L), rest_of(L’;
while #v ≠ 1

do ”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’
od;

”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’;
u

fi
end

¢

begin var u: , v: +;
[result æ] if #L =1 then first_of(L)

else
”u,v’ æ ”first_of(L), rest_of(L’;
while #rest_of(v) ≠ 0

do ”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’
od;

”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’;
u

fi
end

Quantification 287

¢ by ‘loop pull back’, legitimately regarding the predicate #v ≠ 0 as a
function of ”u,v’.

begin var u: , v: +;
[result æ] if #L =1 then first_of(L)

else
”u,v’ æ ”first_of(L), rest_of(L’;
while #v ≠ 0

do ”u,v’ æ ”mult(u,first_of(v)), rest_of(v)’
od;

u
fi

end

so

fact(n) – begin var u: , L, v: +;

L æ ”1..n’: +;
u æ first_of(L);
v æ rest_of(L);
while #v ≠ 0

do u æ mult(u, first_of(v));
v æ rest_of(v)

od;
[result æ] u

end

Of course, we could transform the data-flow diagram for mult+(”1..n’) in other
ways. Using a split-right, we would arrive at the DFD shown in Figure 5.7.
(Again some detail is omitted so as not to detract from the main features — i.e., the
shape).

When n > 1, we can use the functions ‘front_of’ and ‘last_of’ to split ”1..n’ into
”1..n-1’ and ”n’, and by a similar calculation, we get:

mult+(L)¢ if #L = 1 then last_of(L)
else finish_2(front_of(L), last_of(L))

fi

where:

finish_2(x: +,y:) – if #x = 1
then mult(last_of(x),y)
else finish_2(front_of(x),mult(last_of(x),y))
fi

288 Constructing Correct Software

which then transforms into

fact(n) – begin var z: ,L,m: +;

L æ ”1..n’: +;
z æ last_of(L);
m æ front_of(L);
while #m ≠ 0

do z æ mult(last_of(m),z);
m æ front_of(m)

od;
[result æ] z

end

”1..4’

”4’”1..3’

4

”1..2’ ”3’

”1’ ”2’

1 2

3

12

24

24

Figure 5.7

The similarity of these two programs is only to be expected; after all, we are
simply processing the list in the opposite direction. These two programs can be
further transformed and converted so that they do not utilise lists, but this will not
always be possible and hence will not be pursued here.

Quantification 289

Notice, that we could even use split_equal, so

if #L >1 then split_equal(L) = ”L1,L2’

where (2*#L1 = #L ˘ 2*#L1 = #L + 1) ¯ L = L1»L2

fi

This would then give rise to

mult+(L) – if #L =1 then first_of(L)

else mult(mult+(L1), mult+(L2))

fi

where ”L1,L2’ = split_equal(L)

With our running example, this would give the DFD in Figure 5.8.

split_equal

”1..4’

mult+mult+

mult

”1..2’ ”3..4’

2 12

24

Figure 5.8

Here, the two embedded references to mult+ can be computed in any of the ways so
far encountered. In particular, using integer division and parallel execution, we
could have a program such as

fact(n) – begin var z1,z2,m: ;
if n > 1 then m æ n ÷ 2;

(z1 æ mult+(”1..m’) || z2 æ mult+(”m+1..n’));
mult(z1,z2)

else 1
fi
end

290 Constructing Correct Software

So, the “shape” in the specification need not be reflected in a resulting
design/implementation. We suggest that it is not desirable that the structure of a
specification be imposed on any subsequent design and hence it is desirable that a
specification should have no unnecessary structure; and where a degree of structure
is necessary to cope with “size”, that structure should be as general as possible.

5.4 Some Rules for Quantifications

Returning to quantifiers proper, we now look at some rules that can be used in their
manipulation. Recall that quantifiers are commutative, associative, and have an
identity element. In contrast, the induced list operations need to be associative but
not necessarily commutative (because the list ordering is often significant), they
need to process singleton lists appropriately, and only in the * case need we bother
about empty lists. Quantifiers include the operators +, *, ¯ and ˘. These are so
common as to have new symbols to represent them when used as quantifiers,
namely , , ∃ and ∀, but there are many more.

Note also that the familiar logical quantifiers, namely ∃ and ∀, are derived from ˘
and ¯, which are idempotent and hence there is no distinction between the set and
bag formulations of these derived operators. In general, however, quantifiers are not
idempotent and the formulations yield different answers. The bag version is the one
that is appropriate in the general case.

Quantifiers do not just occur as the outer-most operators in a post-condition6

(giving rise to what the logicians call prenex normal form, which might then be
implemented in a straightforward fashion using nested recursions). Elsewhere we
need to be able to manipulate in similar ways to all the other algebraic operations.

Let , called 'circled star', be an arbitrary quantifier. We write it as an infix binary
operator simply to make it easier to read and to see the shape of the surrounding
expressions. The type of is Y2—Y, and e is its identity element.

Moreover, take f:X—Y and s:X— .
Then

(f(x) | x:X | s(x))

represents applied to the elements of the bag

Ê f(x) | x:X | s(x) Á: (Y)
to give a result of type Y.

6 Although they can be manipulated into this form, this is not always a fruitful move.

Quantification 291

One way to ensure that this result is well-defined is to stipulate that the number of
elements to be combined, using , be finite. This follows as a matter of course if
the set { x:X | s(x) } is finite, or even more immediately if X is finite.

The set { x:X | s(x) } is called the base7 of the quantification. The predicate s can
also be thought of as the selector because it selects the items of type X which are
to be included in the base.

(Other restrictions achieve the same effect, but they will not be considered for the
general case.)

5.4.1 General Rules

[To avoid technical problems we shall assume that the types used to generate the
base of a quantification are both finite and non-empty. So that the form of the rules
can be more easily seen, we shall also simplify the notation used. Usually “x:X”
will be omitted, as will the explicit reference to “(x)” in the term and the selector
except when necessary to demonstrate the working of the rule.]

In view of the extensive use of the logical quantifiers, we shall not only give the
general form of each rule but include an interpretation of a logical instance using
both the general syntax introduced above and the more familiar traditional syntax.
So as to make the illustrations more meaningful, we point out that, in the logical
case, both the selector and the term are predicates (both deliver Boolean results), and
they may therefore be ‘combined’ by using so-called trading rules. They allow
information to be ‘traded’ between the selector and term. This also allows us to
quantify over an entire (finite) type using a single composite term. For universal
quantification, we have

(¯p(x) | x:X | s(x)) ¢ (¯(s(x) fi p(x)) | x:X | True)
¢ (∀x:X)(s(x) fi p(x))

or, in a more compact fashion,
(¯p | x:X | s) ¢ (¯(s fi p) | x:X | True)

¢ (∀x:X)(s fi p)

The correspondence for the existential quantifier is

(˘p(x) | x:X | s(x)) ¢ (˘(s(x) ¯ p(x)) | x:X | True)
¢ (∃x:X)(s(x) ¯ p(x))

or
(˘p | x:X | s) ¢ (˘(s ¯ p) | x:X | True)

¢ (∃x:X)(s ¯ p)
7 Some authors call this the range of the quantification, but it is also the domain of the quantification
stage of the evaluation; hence the reason for the introduction of new terminology.

292 Constructing Correct Software

Notice that these trading rules are necessary in order to translate the new notation,
using the two predicates s and p, into the traditional form which only uses a single
predicate. We have

(¯p | x:X | s) ¢ (∀x:X)(s fi p)
(˘p | x:X | s) ¢ (∃x:X)(s ¯ p)

and
(∀x:X)(p) ¢ (¯p | x:X | True)
(∃x:X)(p) ¢ (˘p | x:X | True)

Now for some general rules. We shall not go into lengthy justifications (we can
simply take the rules as ‘given’) but will mention the key properties of bags and
Booleans from which they follow, and how they might relate to useful design
transformations.

(1) Empty base:
(f(x) | | False) ¢ e

This follows from
Ê f(x) | x:X | False Á ¢ Ø

and
x e ¢ x for all x:X

In the logical cases, we have
(¯p(x) | x:X | False) ¢ (¯(False fi p(x)) | x:X | True)

¢ (¯(True) | x:X | True)
¢ True all answers are True

so
(∀x:X)(False fi p(x)) ¢ (∀x:X)(True)

¢ True
Similarly,

(˘p(x) | x:X | False) ¢ (˘(False ¯ p(x)) | x:X | True)
¢ (˘(False) | x:X | True)
¢ False

 there exist no answers which are True
or, in traditional notation,

(∃x:X)(False ¯ p(x)) ¢ (∃x:X)(False)
¢ False

Quantification 293

(2) One-point rule
This is simply the direct application of the term to a single value.

(x \ E)8 (f(x) | | x=E) ¢ f(x)[x æ E]9

 ¢ f(E)
In the logical cases,

(¯p(x) | | x=E) ¢ p(E)
i.e.,

(∀x:X)((x=E) fi p(x)) ¢ p(E)

conditionally evaluate p(x) when x=E,

(˘p(x) | | x=E) ¢ p(E)
i.e.,

(∃x:X)((x=E) ¯ p(x)) ¢ p(E)

 rationalisation, using x=E to simplify p(x).

The empty and singleton rules are clearly useful to cope with ‘trivial’ instances of
problems. The next rules deal with decomposition. Rule 3 can be used to split the
term (from f g to f and g), and Rule 4 can similarly be used to split the selector.

(3) Re-distribution10

If we also have g:X—Y, where (f g)(x) – f(x) g(x), then

 (f | | s) (g | | s) ¢ ((f g) | | s)

This utilises the associativity and commutativity of .

From the general form, we get

 (¯p | | s) ¯ (¯q | | s) ¢ (¯(p¯q) | | s)
 ¢ (¯(s fi (p¯q)) | | True)

(∀x:X)(s fi p) ¯ (∀x:X)(s fi q) ¢ (∀x:X)(s fi (p ¯ q))

and when s ¢ True we get

(∀x:X)(p) ¯ (∀x:X)(q) ¢ (∀x:X)(p ¯ q)

8 That is “x is not (free for substitution) in E ”. See the Appendix for a fuller explanation.
9 f(x)[x æ E] – ¬x.f(x) (E), f(x) with x replaced by E.
1 0 This is not the terminology used by other authors. We do not use "distributivity" since distributivity
— such as the distributivity of * over + or ¯ over ˘ — is not used in the justification of this rule.

294 Constructing Correct Software

and
 (˘p | | s) ˘ (˘q | | s) ¢ (˘(p˘q) | | s)
 ¢ (˘(s ¯ (p˘q)) | | True)
i.e.,

(∃x:X)(s ¯ p) ˘ (∃x:X)(s ¯ q) ¢ (∃x:X)(s ¯ (p˘q))

which then gives,
(∃x:X)(p) ˘ (∃x:X)(q) ¢ (∃x:X)(p˘q)

(4) Base split
If additionally r:X— , then

(f | | r¯s) (f | | r˘s) ¢ (f | | r) (f | | s)

Applied to ¯, this gives

(¯p | | r¯s) ¯ (¯p | | r˘s) ¢ (¯p | | r) ¯ (¯p | | s)
i.e.,

(∀x:X)((r¯s) fi p) ¯ (∀x:X)((r˘s) fi p) ¢ (∀x:X)(r fi p) ¯ (∀x:X)(s fi p)

and with ˘,
(˘p | | r¯s) ˘ (˘p | | r˘s) ¢ (˘p | | r) ˘ (˘p | | s)

so
(∃x:X)((r¯s) ¯ p) ˘ (∃x:X)((r˘s) ¯ p) ¢ (∃x:X)(r ¯ p) ˘ (∃x:X)(s ¯ p)

Notice that if r¯s ¢ False, then we get

(f | | r˘s) ¢ (f | | r) (f | | s)

which is a variant of the familiar ‘divide and conquer’ scheme.

The next rule is concerned with breaking off a ‘simple’ part of the calculation. It
may also be regarded as changing the scope of a variable. It is this aspect that is of
particular importance in the case of the quantifier ∃.

Quantification 295

(5) Nesting. If g:X2—Y and u:X2— ,

(g(x,y) | x,y:X | s(x)¯u(x,y))
¢ ((g(x,y) | y:X | u(x,y)) | x:X | s(x))

i.e., (y \ s)
(g | x,y:X | s¯u) ¢ ((g | y:X | u) | x:X | s)

the Boolean versions of which are

(y \ s)
(¯p | x,y:X | s¯u) ¢ (¯ (¯p | y:X | u) | x:X | s)

i.e.,
(y \ s)

(∀x,y:X)((s¯u) fi p) ¢ (∀x:X)(s fi (∀y:X)(u fi p))
and
(y \ s)

(˘p | x,y:X | s¯u) ¢ (˘ (˘p | y:X | u) | x:X | s)
i.e.,
(y \ s) (∃x,y:X)(s ¯ u ¯ p) ¢ (∃x:X)(s ¯ (∃y:X)(u ¯ p))

so the scope of y is changed.

The variable y is not needed in the evaluation of s, so we can deal with it (and the
the partial evaluation of u and g) first and the pass then intermediate result — which
would be a function — to the outer calculation, which involves s.

Notice also that if p ¢ True, then we have the rule

(y \ s) (∃x,y:X)(s ¯ u) ¢ (∃x:X)(s ¯ (∃y:X)(u))

which emphasises the change even more clearly, and this also works when x and y
are not of the same type.

Carrying on this idea, we can sometimes break a calculation into two parts, each
dealing with one variable.

296 Constructing Correct Software

(6) Interchange of dummy variables
If (y \ r) and (x \ s),
then

((g(x,y) | y:X | s(y)) | x:X | r (x))
¢ ((g(x,y) | x:X | r (x)) | y:X | s(y))

i.e.,
((g | y:X | s) | x:X | r) ¢ ((g | x:X | r) | y:X | s).

The logic versions are

(y \ r), (x \ s)
(¯ (¯p | y:X | s) | x:X | r) ¢ (¯(¯p | x:X | r) | y:X | s)

i.e.,
(∀x:X)(r fi (∀y:X)(s fi p)) ¢ (∀y:X)(s fi (∀x:X)(r fi p))

and

(y \ r), (x \ s)
(˘ (˘p | y:X | s) | x:X | r) ¢ (˘(˘p | x:X | r) | y:X | s)

i.e.,
(∃x:X)(r ¯ (∃y:X)(s ¯ p)) ¢ (∃y:X)(s ¯ (∃x:X)(r ¯ p))

which again gives us a simpler form

(y \ r), (x \ s)
(∃x:X)(r ¯ (∃y:X)(s)) ¢ (∃y:X)(s ¯ (∃x:X)(r))

(7) Re-naming
This serves only to emphasise the independence and arbitrary nature of appropriately
named bound variables.

(y \ f(x), y \ s(x)), (x \ f(y), x \ s(y))
(f(x) | x:X | s(x)) ¢ (f(y) | y:X | s(y))

The logic versions are

(y \ p(x), y \ s(x)), (x \ p(y), x \ s(y))
(¯p(x) | x:X | s(x)) ¢ (¯p(y) | y:X | s(y))

i.e.,
(∀x:X)(s(x) fi p(x)) ¢ (∀x:X)(s(x) fi p(x))

and
(y \ p(x), y \ s(x)), (x \ p(y), x \ s(y))

(˘p(x) | x:X | s(x)) ¢ (˘p(y) | y:X | s(y))

Quantification 297

i.e.,
(∃x:X)(s(x) ¯ p(x)) ¢ (∃y:X)(s(y) ¯ p(y))

and, of course,

(y \ p(x)), (x \ p(y)) (∃x:X)(p(x)) ¢ (∃y:X)(p(y))

5.4.2 Special Rules for Logical Quantifiers

Quantifiers are not just ¯ and ˘ (i.e., ∀ and ∃) but + and * and so on. Of course,
¯ and ˘ are special operators that have properties over and above general
quantifiers. Consequently, they also satisfy other rules, three of which we give
below. Others can be derived by further algebraic manipulation.

Distributivity
Following immediately from the mutual distributivity of ¯ over ˘ and vice versa,
we have

(x \ p) p ˘(¯q | x:X | r) ¢ (¯ (p ˘ q) | x:X | r)

or

(x \ p) p ˘ (∀x:X)(r(x) fi q(x)) ¢ (∀x:X)(r(x) fi (p ˘ q(x)))

(x \ p) p ¯(˘q | x:X | r) ¢ (˘ (p ¯ q) | x:X | r)

or

(x \ p) p ¯ (∃x:X)(r(x) ¯ q(x)) ¢ (∃x:X)(p ¯ r(x) ¯ q(x))

With r ¢ True, we have the expected forms

(x \ p) p ˘ (∀x:X)(q(x)) ¢ (∀x:X)(p ˘ q(x))

and

(x \ p) p ¯ (∃x:X)(q(x)) ¢ (∃x:X)(p ¯q(x))

which are more scope-change rules.

298 Constructing Correct Software

De Morgan’s Laws
Straightforward generalisation of the laws for manipulating simple Boolean
expressions gives

⁄(˘p | x:X | r) ¢ (¯⁄p | x:X | r)
or

⁄(∃x:X)(p ¯ r) ¢ (∀x:X)(r fi ⁄p)
¢ (∀x:X)(⁄r fi p)

and with r ¢ True this gives

⁄(∃x:X)(p) ¢ (∀x:X)(⁄p)

Finally, we have monotonicity.

Monotonicity
This is not an equivalence rule but is based on implication; hence there is a
potential loss of information and the rule is not reversible.

If (¯ (q fi p) | x:X | r), i.e., if (∀x:X)(r fi (q fi p)),
then

 (¯q | x:X | r) fi (¯p | x:X | r)
or

(∀x:X)(r fi q) fi (∀x:X)(r fi p)

Similarly, if (¯ (q fi p) | | r),
then

 (˘q | x:X | r) fi (˘p | x:X | r)
or

(∃x:X)(r ¯ q) fi (∃x:X)(r ¯ p)

These might also be expressed as

(∀x:X)(r fi (q fi p))
(∀x:X)(r fi q) fi (∀x:X)(r fi p) ¢ True,

(∀x:X)(r fi (q fi p))
(∃x:X)(r ¯ q) fi (∃x:X)(r ¯ p) ¢ True

and
(∀x:X)(r fi (q fi p)) fi ((∀x:X)(r fi q) fi (∀x:X)(r fi p))

(∀x:X)(r fi (q fi p)) fi ((∃x:X)(r ¯ q) fi (∃x:X)(r ¯ p))

With rules such as these, we can (attempt to) transform specifications into forms
more susceptible to divide and conquer strategies. Having said this, the rules which
allow changes of name and changes of scope are the most useful.

Quantification 299

Summary This very long list of rules for manipulating quantified forms,
together with the techniques for handling inductively defined functions (in Chapter
3), give us a large armoury of transformations which lead to mechanistic ways of
generating correct implementations of these functions. Of course, in this
introductory text, we are not in a position to utilise them all. Hence we have (the
beginnings of) a catalogue of construction rules. To put these to full use, we need
the facility to carry out the underlying mathematical manipulations, checking for
applicability and then correctly making appropriate substitutions (either manually
or mechanically). Apart from presenting these rules, the contribution made here
(and using the planned web-based supplement) is simply to give more elementary
examples and detailed working so that the reader will more fully appreciate the
mathematical underpinnings of the principles.

Exercises

5.1 Given that a ˘ b ¢ True, show that

(¯p | | s) ¢ (¯p | | s ¯ a) ¯ (¯p | | s ¯ b)

300 Constructing Correct Software

Chapter 6
Refinement and Re-use

Transformations, by definition, are reversible. Working purely with transformations
is therefore essentially about re-arranging information, and without some particular
strategies (such as those given in Chapter 3) we run the risk of going round in
circles and wasting much effort getting precisely nowhere. Even when our initial
specification is deterministic (and hence specifies a single function rather than a
collection of functions, any one of which would be acceptable in the eyes of the
specifier), we may well wish to introduce intermediate non-determinism within the
process of deriving a correct implementation of a specified function. This is in line
with the software engineering maxim that decisions should be delayed for as long as
possible. We have already met a common instance of this in the application of
structural splitting to the processing of lists; instead of deciding exactly how a list
should be split, we can simply say that L should be split into, say L1 and L2, so

that L1»L2 ¢ L. For non-trivial lists, there are many ways that this can be done

— and therefore we have non-determinism, which must eventually be resolved.
Subsequent processing of L1 and L2 will generally lose details of these lists, and

consequently any attempt to retrieve L and then decompose it in a different way may
be impossible. In this small, but very important, chapter we give the essential
elements of the theory of Operational Refinement (or Functional Refinement) based
on the notion of the progressive reduction of non-determinism. We start with the
basic formalisation in Section 6.1.

In Section 6.2, we include a brief digression on the re-use of existing
specification/implementation pairs (which might be available from a library of
software components that are known to be ‘correct’).

A second kind of refinement, data refinement, is discussed in Chapter 8.

A closely related issue, discussed in Chapter 10, is the way in which the adjustment
of data types can provide a possible way round some of the failures of ‘divide and
conquer’ tactics.

6.1 Operational Refinement

We seek to construct a finite sequence of consistent1 relations, each of which is
‘more deterministic’ than its predecessor; the first of these is the given
specification, and the last one is essentially an “executable” program scheme. Each
of these relations can be regarded as a specification (it is a specification of the next
relation in the sequence), and hence we could represent the sequence by

S0, S1, S2, ... , Sn

for some finite n.

However, so as not to cause confusion by apparently changing specifications
(i.e., changing the problem) as we move through a synthesis sequence, we shall call
the intermediate relations “designs” and restrict usage of the name “specification” to
the initial formulation of the problem, either that which is given or which we
generate as a sub-problem as the synthesis proceeds.

spec-f = D0, D1, D2, ... , Dn = f

where spec- f is the initial specification and f is
(the graph of) 2 an implementation; f is an explicit representation of one of the
functions specified by spec-f.

6.1.1 On Correctness

Of course. we cannot just have any sequence of designs; they must ‘link’ together
in the desired way. Each needs to be ‘correct’ with respect to earlier ones in the
progression. The purpose of this sub-section is to show how this is guaranteed,
but first we must clarify exactly what is meant by the correctness of an
implementation (with respect to a given specification).

The idea is fairly simple: any valid data value should give an acceptable answer.
Put more formally, if we are given the specification spec-f:X — Y – [pre, post]
and an implementation f, then

(∀x:X) [if pre(x) then post(x, f(x)) fi]
i.e.,

(∀x:X) [pre(x) ¿3 post(x, f(x))]

 — “for any ... valid data (x) ... f(x) is acceptable”.
1 At the very least, these relations should have the same domain. Read on.
2 As discussed in Chapter 1, we shall blur the distinction between a function and its graph. Here, the

last relation in the sequence is that which includes the pairs ”x, f(x)’ for all x where pre-f(x) = True.
The relation is of type (XÙY), whereas the function f is of type X — Y; its graph is of type (XÙY).
3 We need this version of implication because for some x:X |⁄pre(x) the expression for f(x) may be
illegal.

302 Constructing Correct Software

The difficulty here is dealing with the universal quantifier (∀) — just as it is in
testing. Instead of trying to get an ‘answer’ and then checking for its correctness,
we seek to derive an answer through a sequence of intermediate designs, each of
which fits with its predecessor. First we consider a typical intermediate step.

Any design derived from spec-f is of the form

 :X — Y
pre-f(a) – ...
post-f(a,b) – ...

but there may be numerous designs.

Clearly, we might have problems with the naming of designs, but we realy need to
use names only when discussing the theory. Here names are invented purely for
local convenience. In more global terms, D0 is spec- f and Dn is f for some suitable

name f. Consider two specific designs:

D1:X — Y
pre1(a) – ...
post1(a,b) – ...

and
D2:X — Y
pre2(a) – ...
post2(a,b) – ... — we use simpler names.

D1 and D2 define relations of type (X Ù Y), where X is the type of the input
values and Y is the type of the outputs. As the transfinement sequence is
constructed (so that a transformation or refinement links each of the designs in the
D0 ,..., Dn sequence), we wish to ensure that, at each stage, we can still accept (and

process) all the data acceptable at the previous step. We can express this in various
ways:

“if we can process x by D1 then we can process x by D2”
or

{ x:X | pre1(x) } · { x:X | pre2(x) }
or

D1 · D2 comparing domains.

Pictorially, we can represent this requirement as shown in Figure 6.1.

Refinement and Re-use 303

X

Y

D1 D2

D1

D2

Figure 6.1

But D1 also imposes a bound on acceptable ”x,y’ pairs associated with the
calculation specified (by D1). Clearly, we cannot, now or later, permit extra ”x,y’
pairs to become ‘legal’ without violating post1. To guarantee this, we demand that
for any x ˜ D1, a ‘result’ allowed by D2 must have previously been allowed by
D1. Again this requirement can also be represented in several ways, starting with
Figure 6.2.

X

Y

D1D2

D2

D1

Figure 6.2

304 Constructing Correct Software

Alternatively, we may write

D2 · D1
or

{ ”x,y’ : X Ù Y | pre2(x) post2(x,y) }
· { ”x,y’ : X Ù Y | pre1(x) post1(x,y) }

from which it follows that

{ x:X | pre2(x) } · { x :X | pre1(x) }
i.e.,

D2 · D1
so

D1 = D2

Hence
(∀x:X)(pre1(x) = pre2(x)) ;

that is,
pre1 = pre2.

Putting these requirements together, we therefore get the situation in Figure 6.3.

X

Y D1

D2

D1

D2

Figure 6.3

We say that design D2 is consistent with the design D1 (or, put another way, D2
is a design refinement of D1), written D1 ∞ D2 if pre1 = pre2 and, whenever
pre1(x) is True, post2(x,y) ¿ post1(x,y); i.e., the set of valid data is the same, and
any result delivered by D2 is also acceptable to D1.

Refinement and Re-use 305

Summarising, all the old data still works and there are no new results.

We say that D1 refines, or is refined, to D2, and since the pre-conditions are
maintained (this condition can be varied when we seek to “re-use” derivations, as
inSection 6.2) we also use the “∞” symbol to indicate the relationship between the
associated post conditions, namely post1 ∞ post2.

Technically, if D1:X Ù Y – [pre, post1] and D2:X Ù Y – [pre, post2] and

D1 ∞ D2

then we allow ourselves to write

post1 ∞ post2

and treat it as being equivalent to the sequential implication rule

(pre(x) ¿ (∃y:Y)(post2(x,y))) (∀z:Y)(post2(x,z) ¿ post1(x,z))

The condition required for the application of this rule, namely

(pre(x) ¿ (∃y:Y)(post2(x,y))),
is rather complex, and we

really ought to say more about it. It says that the pre-condition for D1 is satisfied
and that the pair of predicates pre and post2 together form a valid specification. The
‘rule’ then says that D2 is consistent with D1. We need all this complication to
ensure that we retain not only consistency with D1 but keep all the required data
values. Without the rule condition, we could use the constant predicate ‘False’ for
post2; this would be consistent but would give us no answers whatsoever. In
practice, we shall not need to check this condition but merely ensure that the current
pre-condition works for the next post-condition at each stage.

We make one final technical point about design sequences. Given the specification
spec-f, an initial design, we shall attempt to find an implementation (a deterministic
design), f, which is consistent with the specification, so that spec-f ∞ f. A design D
(based on conditions pre and post) is deterministic if

(Åx:X)(pre(x)
¿ (∃y1,y2:Y)

(pre1(x) (post(x,y1) ¯ post(x,y2)) ¿ (y1 = y2)))

So, for any valid data value x, if we (seem to) get results y1 and y2, then they are

actually equal, so the answer is unique.

306 Constructing Correct Software

6.1.2 Some Properties of Design Refinement

Design refinement is transitive:
if D1 ∞ D2 and D2 ∞ D3 then D1 ∞ D3.

This follows easily from the transitivity of ‘=’ and ‘¿’ whence pre1 = pre3 since
pre1 = pre2 and pre2 = pre3, and post3 ¿4 post1 since post3 ¿ post2 and
post2 ¿ post1.

So if we consider the specification spec- f and an implementation I (of f) linked by a
sequence of intermediate designs, then, with the obvious notation

spec-f ∞ I i.e., pre-f = pre-I and post-I ¿ post-f .

As I is deterministic, then for any x:X satisfying pre-I there is a unique y:Y such
that post-I(x,y). As in conventional mathematics, y is usually denoted by f(x).

Putting all of this together,

(∀x:X) pre-f(x) ¿ pre-I(x)
¿ post-I(x, f(x))
¿ post-f(x, f(x))

and I is a correct implementation of f as specified by spec-f.

The aim of this is to refine/reduce/reify5 spec-f to another design which is closer to
being an implementation (ultimately to achieve a unique answer from each valid
input).

Remember that the purpose of the pre-condition is to ensure that answers exist, and
each answer, together with associated data, must satisfy the post-condition. From
an operational point of view, we need to know that the pre-condition holds before
considering the post-conditions. From a mathematical standpoint, the weakest pre-
condition (wp) can be found from the post-condition. In practice, the required pre-
condition may be more restrictive.

[‘∞’ is also anti-symmetric since if D1 ∞ D2 and D2 ∞ D1 then D1 and D2 are equal,
i.e. D1 ¢ D2. So the notations correlate in a reasonable fashion.]

4 Here the intent is obvious, but for completeness we give a proper definition:
given p,q:X — , (p ¿ q) – (∀x:X)(p(x) ¿ q(x)).

Here (post3) = (post1) so
(post3 ¿ post1) – (∀x:X,y:Y))(x ∈ (post3) (post3(x,y) ¿ post1(x,y)))

5 Meaning “to make ‘stone like’, to fix”.

Refinement and Re-use 307

Example 6.1 Consider the following two specifications:

split: X* — X* Ù X*
pre-split(L) – #L > 1
post-split(L,”L1,L2’) – L = L1»L2 ¯ L1 ≠ ”’ ¯ L2 ≠ ”’

and
split_1: X* — X* Ù X*
pre-split_1(L) – #L > 1
post-split_1(L,”L1,L2’) – (∃x:X)(L = L1»L2 ¯ L1= ”x’)

To justify the use of split_1 as a refinement of split (so split ∞ split_1), we must
check the relationship between the pre- and post-conditions.

Clearly, pre-split = pre-split_1.

Now assume that #L > 1; then

 post-split_1(L,”L1,L2’)

¿ (∃x:X)(L = L1»L2 ¯ L1= ”x’)

¿ (∃x:X)(L = L1»L2

¯ L1= ”x’ ¯ (#L2 + 1) = #L)

¿ (∃x:X)(L = L1»L2

¯ L1= ”x’ ¯ (#L2 + 1) > 1)

¿ (∃x:X)(L = L1»L2

¯ L1= ”x’ ¯ #L2 > 0)

¿ (∃x:X)(L = L1»L2

¯ #L1 > 0 ¯ #L2 > 0)

¿ (∃x:X)(L = L1»L2 ¯ L1 ≠ ”’ ¯ L2 ≠ ”’)

¿ post-split(L,”L1,L2’)

Therefore, we can replace spec-split by spec-split_1 without the loss of any
essential information.

❑

308 Constructing Correct Software

6.1.3 An Alternative View

Suppose we have a design, D1, for a function of type X — Y . If D 1 is not
deterministic, and hence not the graph of an implementation, then we can seek ways
of finding a design v2 such that D1 ∞D2 and D1 ≠ D2. Suppose also that the
components of D1 and D2 are as indicated below:

D1:X — Y and D2:X — Y
pre(x) – ... pre(x) – ...
post1(x,y) – ... post2(x,y) – ...

For any value a:X for which pre(a) ¢ True, the set { y:Y | post1(a,y) } ≠ Ø. (This
is, of course, precisely the situation which the pre-condition is intended to
guarantee.)

Moreover, since D1 is not deterministic, there is some value b:X such that
pre(b) ¢ True and #{ y:Y | post1(b,y) } ≥ 2.

If D2 is to be a reduction (i.e., a strict refinement, one which is not reversible as
would be the case if D1 = D2) we would require at least one value b:X satisfying
pre and the condition

{ y:Y | post1(b,y) } º { y:Y | post2(b,y) }
and hence

#{ y:Y | post1(b,y) } >6 #{ y:Y | post2(b,y) }.

This gives us an alternative (yet equivalent) way to characterise operational
refinement.

If D1 is (the graph of) an implementation, then, for all x:X where pre(x) ¢ True,
the set { y:Y | post1(x,y) } is a singleton.

If D1 is not an implementation but D1 ∞ D2 and D2 is an implementation, then,
for all x:X where pre(x) ¢ True, the set { y:Y | post2(x,y) } is a singleton and the
reduction can be viewed as picking a single value, c, from the set {y:Y | post1(x,y)}
and using it to define post2(x,c), and hence f.

Explicitly,
post2(x,c) ¢ c = f(x).

In a more general situation, when D2 is not necessarily an implementation, design
reduction/refinement may be viewed simply as deriving a non-empty set
{ y:Y | post2(x,y) } by removing elements from the set { y:Y | post1(x,y) } for one
or more of the values x where pre(x) ¢ True.

6 But be careful when trying to argue about infinite sets.

Refinement and Re-use 309

This may be achieved more systematically by adding extra constraints to post1 to
get post2. Algebraically, for a general x, we may define

post2(x,y) – post1(x,y) ¯ p(y) for some p:Y — ,

provided that

(∀x:X)(pre(x) ¿ (∃y:Y)(post2(x,y)))

If all else fails, find a value of x where

#{ y:Y | pre(x) post1(x,y) } > 1 and then throw away one element,
but this could be a very lengthy process.

6.2 Re-using Designs

We now consider a different situation. Suppose that there exists an implementation
of design D3 and we are invited to use this implementation as a refinement for D1.
(D3 might be in a library of designs.) This would only be possible if the
specifications were related in the right way. Look at the relationship indicated in
Figure 6.4.

X

Y

D1

D3

D1

D3

Figure 6.4.

Design D3 might be applicable outside the set of values for which we are to
produce results in D1; we are only concerned with what happens within the domain
of D1.

310 Constructing Correct Software

And the re-use of a design carries with it the re-use of a previously produced
derivation sequence (with the appropriate ‘contractions’ so as to ignore input values
that are now not required).

Clearly we require that D1 · D3
but now it may no longer be the case that

D3 · D1.

We need to intersect D3 with D1 which will then limit our consideration to
relevant input values.

The modified conditions are

D1 · D3
and

D3 fl (D1 Ù Y) · D1
or, in logic,

(∀x:X)(pre1(x) ¿ pre3(x))
and

(∀”x,y’:XÙY)(pre1(x) (post3(x,y) ¿ post1(x,y)))

Referring to Figure 6.4, we restrict D3 to the input values of D1. The resultant set
(the double hatched area) must be a refinement of D1, i.e. a relation (sub-set) with
the appropriate domain.

Example 6.2 Over (Ù) so D1,D3 · Ù

pre3(x) – True
post3(x,y) – x2 = y

and
pre1(x) – x ≥ 0
post1(x,y) – x2 = y

Here, the formulae for the post-conditions are the same but the domain of ‘D1’ (the
set for which pre1 is True) is restricted to positive integers. Hence, when
programming ‘D1’ we do not need to cope with negative input values.

❑

Refinement and Re-use 311

Example 6.3 Again, over (Ù),

pre3(n) – True
post3(n,m) – if n < 15 then m = n2 else m = n3 fi

and
pre1(n) – 1 ≤ n ≤ 10
post1(n,m) – m = n2 ˘ m = n

The predicates used here are intentionally simple so that the logical inter-
relationships are very clear.

pre1 ¿ pre3 so the library routine will handle all the required data.

(pre1) post3 ¿ post1 so the results from the library routine fit our current
specification

That is, the routine, program, which satisfies the specification [pre3, post3] can be
used to implement [pre1, post3].

❑

We may also allow ‘slight’ type adjustments. For instance, in Example 3.17 we
showed that in certain situations insert could be used to implement merge, despite
the signatures (types) being different.

Recall the specifications

merge: *Ù * — *
pre-merge(”N1,N2’) – ascending(N1) ¯ ascending(N2)

post-merge(”N1,N2’,N) – ascending(N) ¯

 bag_of(N) = bag_of(N1) È bag_of(N2)

and
insert: Ù * — *
pre-insert(”x,L’) – ascending(L)
post-insert(”x,L’,N) – ascending(N) ¯

 bag_of(N) = bag_of(L) È ÊxÁ

Clearly, from x: * we can construct ”x’: * by means of a cast 7. In general, we
cannot take L: * and derive from it one single integer. (Usually, there are many;
there may be none.) However, within the design development presented in Example
3.17, we had the extra constraint on N1 that #N1 = 1; therefore a well-defined

‘extract’ function (N1 Ÿ first_of(N1)) does exist and nothing is lost by the use of

7 See Section 1.4.10.

312 Constructing Correct Software

insert for merge, providing that this extra condition is met. Namely

insert(x, L) ¢ merge(”x’, L)

The relationship between the types underlying these two functions is very similar
to the notions behind Data Refinement; about which we shall say (a little) more in
Chapter 8.

Conclusion

The theory is based on two sequential implications (¿), one which preserves valid
inputs and the other prevents the creation of new (out of ‘spec’) results. In practice,
we need to ensure that we eventually reach a situation where each valid input has a
unique output and we have (the graph of) a function rather than a more general
binary relation.

We can often achieve this by imposing extra constraints (either by adding, ¯ing,
new Boolean terms to the post condition, or by using structural decomposition)
providing that these constraints do not remove too many values and hence reduce
the domain, which must remain constant.

Refinement and Re-use 313

Chapter 7
Sorting

Having introduced and illustrated the major construction techniques on some simple
problems, we now turn our attention to the more substantial task of sorting. We
demonstrate how a selection of different algorithms can be derived from a single
specification, but our coverage is by no means exhaustive. Our major concern is
the detailed application, and a certain amount of customisation1, of the general
transfinement tactics.

After a preliminary discussion of the problem (in Section 7.1), we shall present the
designs in a layered fashion, first obtaining three main high-level approaches (and
generating specifications of sub-problems) in Section7.2, and then develop them
into more explicit designs in Section 7.3. This scheme is not new 2, although the
presentation here is probably more constructive. Finally, in Section 7.4 we show
how high level functions, as introduced in Chapter 5, can quickly yield a design for
a sorting algorithm, albeit one over which we have little control. In Chapter 9, we
return to sorting and take a look at how arrays can be used within the development
of more sorting algorithms.

In places, our presentation is given in great detail. At the risk of boring the reader
who well-understands the principles, this is done to emphasize points which are
often missed by those who are new to formal methods.

7.1 Specification and Initial Discussion

In general, we need knowledge about the problem domain, about the data types used
to model the input and output. Here we need to know about lists and integers.
Notice first that the type of the input need not be lists of integers; if we were
solving the problem ‘by hand’, then we would be given a bag of integers and asked
to produce an appropriate list. But bags can not be read as input to programs
without their elements being processed in a certain order; hence the input bag must

1 Such customisation is common and allows us to extend our (very small) set of general tactics by
using domain knowledge.
2 Parts of this chapter (and Chapter 9) closely follow Darlington,J., “A Synthesis of Several Sorting
Algorithms”, Acta. Informatica (11), 1-30 (1978).

effectively be regarded as a list. Notice that in real applications we would often be
required to sort lists of records but, merely to focus on the computational aspects
and reduce the amount of text within expressions, we consider lists of integers
instead of lists of records in which there is an integer key. The technical connection
is simply that we use x: rather than key of x where x:record, and key : .
Arbitrarily we choose to sort the list in ascending order from left to right.

We shall presume familiarity with lists and their properties, but a compendium of
relevant operations and rules is given in the appendix for completeness. Rules for
integers and special rules for lists of integers are similarly included, but we draw
attention to the property that any list which is not in ascending order must have an
adjacent pair of elements which are not in the correct order3.

Now for the problem. We first give an appropriate specification and then describe it
in some detail.

Sort: * — *
pre-Sort(L) – True
post-Sort(L,N) – bag_of(N) = bag_of(L) ¯ ascending(N)

where bag_of(”’) ¢ Ø
bag_of(”x’) ¢ ÊxÁ

bag_of(L1»L2) ¢ bag_of(L1) È bag_of(L2)

ascending(N) – (∀x,y:)(x before y in N fi x ≤ y)
and

x before y in N – (∃N1,N2,N3: *)(N = N1»”x’»N2»”y’»N3)

This specification tells us the properties of the desired output list relative to the
given input. The specification is presented in a hierarchical fashion intended to
assist in its comprehension, not its implementation per se . It need not tell us
anything about how the result can be obtained.

Here the characterisation of “bag_of” is axiomatic, whereas ascending is defined
using quantification. This is written in the classical form, but we shall re-express
this in some alternative forms that are more amenable to the manipulations required
for certain design strategies.

3 If no adjacent pairs are out of order, then, by the transitivity of ‘≤’, the entire list is in ascending
order.

318 Constructing Correct Software

Let’s read through the post-condition:

post-sort(L,N) – bag_of(N) = bag_of(L) ¯ ascending(N)

The “bag_of ” function takes a list and delivers the multi-set, the bag, of the
elements contained in the list, so the first part of the post-condition simply says
that the lists L and N have exactly the same elements, including duplicates where
appropriate. Additionally, the list N must be in ascending order. To complete the
specification, we (or someone else) must define what these sub-parts mean.

Our axiomatic definition of “bag_of” is

bag_of(”’) ¢ Ø
— the empty list contains no elements; Ø is the empty bag,

bag_of(”x’) ¢ ÊxÁ
— the singleton list yields the singleton bag,

bag_of(L1»L2) ¢ bag_of(L1) È bag_of(L2)

— list concatenation, », translates into bag union, È.
In bag unions, duplicates are preserved.

Now for ascending,

ascending(N) – (∀x,y:)(x before y in N fi x ≤ y)

This says that N is ascending if, for all integers x and y, if x occurs before y in N ,
then

x ≤ y
and

x before y in N – (∃N1,N2,N3: *)(N = N1»”x’»N2»”y’»N3)

defines exactly what “x before y in N” means, namely that we can find lists N1,N2

and N3 which when composed with x and y as indicated make up N.

Before going on, let us consider the solvability of the sorting problem. Is it really
possible to produce N as a sorted version of an arbitrary finite list L?

We re-arrange the post-condition. First we can get rid of the “before...in...”
construction and use a more general conditional quantification syntax from Chapter
5.

Sorting 319

So
ascending(N) – (∀x,y:)(x before y in N fi x ≤ y)

and
x before y in N – (∃N1,N2,N3: *)(N = N1»”x’»N2»”y’»N3)

together become

ascending(N) ¢
 (¯(x ≤ y) | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3)

We and together, ‘conjoin’, all the values in the bag derived from the term “x ≤ y”
which are obtained from the set of all 5-tuples ”x,y,N1,N2,N3’ which satisfy the

condition
N = N1»”x’»N2»”y’»N3.

Remember that this set of elements is the base of the quantification.

If any elements are ‘out of order’ then there will be at least one ”x,y’ pair that
will cause x ≤ y to evaluate to False and hence the and (the ¯, the ∀) will give
False as expected. Otherwise we get True.

[All terminating calculations are completed in a finite number of stages, and all
pieces of valid data are also finite. Therefore, we must also either replace infinite
types by finite approximations or take other steps to guarantee that the base is
finite. In this problem, the input list L is finite so there are no problems due to
infinite collections of data.]

Other ways of expressing the ascending condition relate to counting the number of
elements which are ‘out of place’. Such “out of orderness” measures are necessary
when applying certain problem-solving strategies, but here we are only concerned
with investigating whether the problem is solvable; not in solving it.

[Taking the trouble to investigate a problem and check details is one of the aspects
of formal methods that programmers find frustrating. Perhaps this is exacerbated by
pressures to produce code quickly, but skipping such details may cause errors.
Paying attention to such details is intrinsic to formal methods; without such
attention, we cannot guarantee the correctness of the software produced.]

First notice that by using de Morgan’s law we can make the following change:

(¯(x ≤ y) | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3)

¢
 ⁄(˘ ⁄(x ≤ y) | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3)

320 Constructing Correct Software

That is, it is not the case that there are any ”x,y’ pairs, where x comes before y in
N and x ≤ y doesn't hold

¢
⁄(˘ (x > y) | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3)

Alternatively, instead of simply saying that there are none of these pairs, we could
count them and then require that the count be zero.

¢
 (+1 | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3 ¯ (x > y)) = 0

In this quantification the “+1” says that we add together all the “1s” we get every
time the condition is satisfied. Notice that this not only gives the same answer as
before but the expression
 (+1 | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3 ¯ (x > y))

gives greater integer values when the list N is more disordered.

For example, for the list ”1,2,5,4,3’ we get the value 3, whereas the list
”1,2,5,3,4’ gives 2. Moreover, if the list is not ordered and we swap one of its
offending (i.e., out of order) pairs, then this quantity is reduced, thus demonstrating
that within a finite number of exchanges the list will be sorted and hence the given
list, indeed any finite integer list, can be sorted. But this claim is not obvious, and
even if it were, we would still need to justify it.

Suppose that the list was not in ascending order, that x > y with x before y and that
z is some other element in the list. There are three possible positions for z relative
to x and y.

(a) z...... x y

(b) x z...... y

(c) x y z......

Consider what happens when we attempt to improve the ordering by exchanging the
x and y values in the positions indicated. There are five possible relationships
between z and (x and y) in each of the three scenarios above. Scenario (c) is clearly
a reflection of (a), so we need only consider (a) and (b). Furthermore, since the
relative positions (such as z before x and z before y) do not change in (a) then
neither do the contributions (to the “out of order’ness” measure) due to z , but
swapping x and y does reduce the measure.

Sorting 321

Similarly, in the (b) scenario, all the other items in the list stay in place, so we
need only consider the contribution to the calculation of

 (+1 | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3 ¯ (x > y))

made by a typical element z between x and y.

First we evaluate the z contribution in the unchanged (b) list:

(b) x z..... y

When z < y (and thus z < x) the contribution is 1
when z = y (and thus z < x) the contribution is 1
when y < z < x the contribution is 2
when z = x (and thus y < z) the contribution is 1
when x < z (and thus y < z) the contribution is 1

Now perform the swap to get:

(b') y z..... x

Then,
when z < y (and thus z < x) the contribution is 1
when z = y (and thus z < x) the contribution is 0
when y < z < x the contribution is 0
when z = x (and thus y < z) the contribution is 0
when x < z (and thus y < z) the contribution is 1

So the z contribution either remains constant or is reduced. Summing the
contributions over possible values and positions of z, the measure therefore, at
worst, does not increase. But in the measure, the x—y swap must reduce the sum
by 1 so overall there is a reduction.

This property could be used as the basis for constructing a sorting algorithm, and
later it will be used as such, but at the moment all we are interested only in is
showing that the problem does have a solution.

Such measures are not just interesting, they are crucial. As part of the synthesis
procedure, we shall have cause to introduce recursion, and when this is done we need
to ensure that we use a well-ordering, a strict reduction in some characteristic of the
problem that uses the positive integers (). This guarantees convergence of
recursion. Moreover, if the recursion is transformed into iteration, then that
iteration will terminate, by construction. This means that, later in the development

322 Constructing Correct Software

development process, there is no need to find loop invariants (and variants) which
are required in retrospective verification proofs.

7.2. Initial Designs

Our constructive approach to programming now requires that we take the
specification and, working within the rules which govern the relevant data types,
apply appropriate problem-solving strategies to reorganise and particularise the
specification into a recursive design for an executable program.

Sorting is a fairly simple problem to specify, but it can be implemented in a
myriad of different ways (even back in 1973, Knuth 4 filled almost 400 pages on the
subject). In this section, we give the initial phases of derivations leading to three
major types of sorting algorithms. As will become clear later, concepts introduced
within the initial stages of the designs cross over when the lower-level details are
considered in Section 7.3 and in Chapter 9.

7.2.1 Problem Reduction

We have just seen that one way of characterising whether the list L is in ascending
order is to evaluate the test:

(+1 | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3 ¯ (x > y)) = 0

We already know that, in any unsorted list, swapping an ‘out of order’ pair of
numbers, which need not be adjacent, reduces the left-hand expression in this test.

This leads us immediately to the following design, which uses domain splitting
(with the test ‘is L ascending’) and any reduction based on a suitable swapping
function. To make the description easier, we define

M(N) – (+1 | x,y: ,N1,N2,N3: * | N = N1»”x’»N2»”y’»N3 ¯ (x > y)).

So
post-sort(L,N)

¢ — using the specification

bag_of(N) = bag_of(L) ¯ ascending(N)

4 Knuth,D.E., The Art of Computer Programming, Vol 3 “Sorting and Searching”, Addison-Wesley
(1973).

Sorting 323

∞
if ascending(L)

then N = L
else N = sort(improve(L))

fi

where:
improve: * — *
pre-improve(L) –⁄ ascending(L)
post-improve(L,P) – bag_of(P) = bag_of(L) ¯ M(P) < M(L)

[Notice that this is not a “divide and conquer” strategy so there is no splitting
function. This concept of improving a value so that it becomes closer (in an
appropriate sense) to one on which the calculation is trivial is very important. It
will be used frequently in what follows, but the measures used to characterise the
size of the problem will be specialised to suit the problem under consideration and
will often relate only to part of the data.]

We seem merely to be passing the buck. All the real work in this algorithm design
is in the improve function. This is indeed true, but the shape of this design is
fundamental. As will be seen more clearly when we express the design in
functional form, it is tail-recursive — on one branch of the conditional structure,
the last function to be performed is the same function as we are defining (and it
occurs only there). In this situation, we can immediately replace the recursion by
iteration. Variants of this situation effectively explain how all common forms of
iteration are related to recursion. Now we return to the current synthesis.

¢
 [N =] if ascending(L)

then L
else sort(improve(L))

fi

where:
improve: * — *
pre-improve(L) –⁄ ascending(L)
post-improve(L,P) – bag_of(P) = bag_of(L) ¯ M(P) < M(L)

‡ from relational to functional form
 [N =] sort(L) where:

sort(L) – if ascending(L)
then L
else sort(improve(L))

fi;
improve(L) – ...

324 Constructing Correct Software

‡ from functional to procedural form

improve(L) – ... ;
sort(L) – [result æ] if ascending(L)

then L
else sort(improve(L))

fi;
N æ sort(L)

¢ apply the (tail-) recursion removal rule

improve(L) – ... ;
sort(L) – (var V: *;

V æ L;
while ⁄ ascending(V)

do V æ improve(V)
od;

result æ V);
N æ sort(L)

Thus we have a design for an iterative procedural program that is automatically
correct relative to the given specification. Providing that any subsequent
transfinements are performed correctly, the resultant complete program will also be
correct and can be optimised by use of other (procedural programming)
transformations if efficiency needs to be improved.

So now we have an outline (the outer level) of a program which involves
undeveloped segments and we have derived specifications of the remaining parts.
We shall look at how the design might be completed once we have investigated
other possible initial design steps.

Sorting 325

7.2.2 Structural Splitting

Now for a less direct approach. Arbitrarily split the list into two parts, sort each
separately, and then try to construct the overall answer from the answers to the two
parts. This is a classical “divide and conquer” approach using an ‘ignorant’ split,
which does not consider the values present in the list.

The general schema can be depicted by the data-flow diagram in Figure 7.1:

split

sort sort

combine

L

N

Figure 7.1

The list L is finite (i.e., #L, the length of L, is a finite positive integer). We shall
effectively assume that we can sort any list which is ‘smaller’ than the given one.
(This is really hiding a proof/construction by induction.) Splitting L into L1 and

L2 (so L ¢ L1»L2) gives us #L ¢ #L1 + #L2. In order to make progress, and

guarantee convergence/termination of our construction, we need some strictly
reducing -valued measure of the size / complexity / magnitude of the problem.
Here we do not use M as in the previous section but the length of the lists. So we
must insist that #L1 < #L and #L2 < #L; and this in turn means that #L1 ≥ 1,

#L2 ≥ 1, and hence #L ≥ 2.

Note that if #L < 2, then ascending(L) must be True. The set
 {”x,y,L3,L4,L5’: Ù Ù *Ù *Ù * | L = L3»”x’»L4»”y’»L5 }

is clearly empty and hence we have to “and”(to “¯”) together zero terms and since
“True” is the identity element associated with the “¯” operation, ascending(L) is
True. Thus, if #L < 2 we can show that using L for N is acceptable.

326 Constructing Correct Software

We do this by substituting L for N using L¢N in the post-sort(L,N) and showing
that it evaluates to True.

post-sort(L,N) ¢ post-sort(L,L)
¢ bag_of(L) = bag_of(L) ¯ ascending(L)
¢ True ¯ True
¢ True

So, using the predicate (#L < 2) to split the problem domain, a solution starts to
emerge which is of the form

 post-sort(L,N) ¢ if #L < 2 then N = L
else ... fi

In the #L ≥ 2 case, we now introduce non-empty lists L1 and L2 and append the

extra condition L = L1»L2 to the ‘else’ part of the current design. This does

nothing adverse since these new lists are internal to the design. Also notice that
since we have a conjunction of conditions, they must all be True and hence we can
(later) use one to simplify the others by rationalisation.

So, given L where #L ≥ 2, we introduce L1 and L2.

Next, we assume that L1 and L2 can be sorted, i.e., that there exists an

implementation of sort which works correctly on these shorter lists and hence
produces lists N1 and N2 such that

N1 = sort(L1) and N2 = sort(L2)

where
post-sort(L1,N1) ¢ bag_of(N1) = bag_of(L1) ¯ ascending(N1)

and post-sort(L2,N2) ¢ bag_of(N2) = bag_of(L2) ¯ ascending(N2) .

We avoid explicit justification, but this relies on Burstall’s structural induction
principle5 which works by virtue of our suitable measure of ‘size’.

The lists N1 and N2 can also be included and the design description extended to

include their properties.

The main design step is now almost complete. We can refer back to the general
(divide and conquer) diagram and append relevant names to the internal data-flow
lines as in Figure 7.2. We number the splitting and combination components since
we are going to meet many different variants in subsequent designs.
5 Burstall,R.M., “Proving Properties of Programs by Structural Induction”, Comp. J. (12), 41-48
(1969).

Sorting 327

split_1

sort sort

combine_1

L

N

L1 L2

N2N1

Figure 7.2

If the “divide and conquer” strategy works, then other relationships can be removed.
We need to re-organise the information that we now have available into a form that
matches Figure 7.2.

bag_of(N) = bag_of(L) ¯ ascending(N) ¯
L = L1»L2 ¯

bag_of(N1) = bag_of(L1) ¯ ascending(N1) ¯

bag_of(N2) = bag_of(L2) ¯ ascending(N2)

Applying common bag rules
bag_of(L) ¢ bag_of(L1»L2)

¢ bag_of(L1) È bag_of(L2)

 where: L1,L2: +, non-empty integer lists.

[The bag union operator does not remove duplicates; no elements are lost.]

and so
 bag_of(N) ¢ bag_of(L)

¢ bag_of(L1) È bag_of(L2)

¢ bag_of(N1) È bag_of(N2)

328 Constructing Correct Software

Widening the scope of the local names L1,L2,N1,N2 — allowed since they are all

new — we can lay out the design thus:

(∃L1,L2,N1,N2: +)(L = L1»L2 ¯

bag_of(N1) = bag_of(L1) ¯ bag_of(N2) = bag_of(L2) ¯

ascending(N1) ¯ ascending(N2) ¯

bag_of(N) = bag_of(N1) È bag_of(N2)

¯ ascending(N))

which then can be ‘boxed’ so as reflect the sought after structure, i.e.,

 (∃L1,L2,N1,N2: +)(L = L1»L2 ¯

 bag_of(N1) = bag_of(L1) ¯ bag_of(N2) = bag_of(L2) ¯

ascending(N1) ¯ ascending(N2) ¯

 bag_of(N) = bag_of(N1) È bag_of(N2)

 ¯ ascending(N))

We could now introduce combine_1 specified as

combine_1: *Ù * — *
pre-combine_1(”N1,N2’) – ascending(N1) ¯ ascending(N2)

post-combine_1(”N1,N2’,N) – ascending(N) ¯

 bag_of(N) = bag_of(N1) È bag_of(N2)

Having done some of the exercises in Chapter 1, the reader might recognise this as
the specification of merging two ascending integer lists — hence we rename
combine_1 as merge. As with good programming practice, the use of sensible
names is to be encouraged. If we were interested in deriving a single algorithm,
this would also be appropriate here; however, if we tried to do that throughout this
chapter we would either run out of sensible names or have to use identifiers that
were too long to be easily manipulated in expressions. Inasmuch as this detracts
from the readability of some mathematical expressions, we apologise to the reader.

Sorting 329

So, in total we have the skeletal design of a simple merge sort program:

if #L < 2
then N = L

else (∃L1,L2,N1,N2: +)

(”L1,L2’ = split_1(L) ¯

N1 = sort(L1) ¯ N2 = sort(L2) ¯

N = merge(”N1,N2’)

fi

Thus, we have a high-level recursive design for sorting. For this we claim that if
split_1 and merge are implemented so as to satisfy their specifications, then this
design satisfies the specification for sort,

where, for completeness, split_1 is specified by

split_1: * — *Ù *

pre-split_1(L) – #L ≥ 2
post-split_1(L,”L1,L2’) – L = L1»L2 ¯ #L1 ≥ 1 ¯ #L2 ≥ 1

The only jobs left to be done with this design are to change the paradigms so as to
make the extraction of the result more explicit. We shall not attempt to describe
this in general terms but refer the reader back to Chapter 3 and illustrate the
paradigm shifts in the course of synthesising the algorithm designs.

Now, putting all the pieces together, the formal presentation of the design
derivation for a general merge sort is as follows.

Assuming the pre-condition (i.e., here assuming nothing special about L), we have
post-sort(L,N)

¢ using the specification

bag_of(N) = bag_of(L) ¯ ascending(N)

330 Constructing Correct Software

¢ partitioning the domain *

if #L < 2
then bag_of(N) = bag_of(L) ¯ ascending(N)
else bag_of(N) = bag_of(L) ¯ ascending(N)

fi

¢ since when #L < 2, L = N satisfies bag_of(N) = bag_of(L) ¯ ascending(N)

Normally we would have to break off here and do a side derivation using
the extra assumption that #L < 2. But in this instance we merely use
the ‘checked’ result, which was thought to be ‘obvious’.

if #L < 2
then L = N
else bag_of(N) = bag_of(L) ¯ ascending(N)

fi

∞ This is potentially a strict (i.e., non-reversible) refinement since we use
implementations

if #L < 2
then N = L

else (∃L1,L2,N1,N2: +)

(”L1,L2’ = split_1(L) ¯

N1 = sort(L1) ¯ N2 = sort(L2) ¯

N = merge(”N1,N2’))

fi

where: split_1 and merge are realisations (implementations) of

split_1: * — *Ù *

pre-split_1(L) – #L ≥ 2
post-split_1(L,”L1,L2’) – L = L1»L2 ¯ #L1 ≥ 1 ¯ #L2 ≥ 1

and
merge: *Ù * — *
pre-merge(”N1,N2’) – ascending(N1) ¯ ascending(N2)

post-merge(”N1,N2’,N) – ascending(N) ¯

bag_of(N) = bag_of(N1) È bag_of(N2)

Sorting 331

¢ “where” introduction, Motivated by the data-flow diagram.
 Moving towards the functional form.

if #L < 2
then N = L
else (N = merge(”N1,N2’)

where: L1,L2,N1,N2: +

N1 = sort(L1) ¯ N2 = sort(L2)

”L1,L2’ = split_1(L)

)
fi

¢ factoring out the “=” over the “if-then-else-fi” structure,

N = if #L < 2
then L
else (merge(”N1,N2’)

where: L1,L2,N1,N2: +

N1 = sort(L1) ¯ N2 = sort(L2)

”L1,L2’ = split_1(L)

)
fi

‡ in ‘functional’ form; the ‘N =’ is not necessary since the answer is the
evaluation of the expression “sort(L)”.

 [N =] sort(L) where:

sort(L) – if #L < 2
then L

else (∃L1,L2,N1,N2: +)

(merge(”N1,N2’)

where: N1 = sort(L1) ¯ N2 = sort(L2)

where: ”L1,L2’ = split_1(L)

)
fi,

split_1(L) – ... ,
merge(”N1,N2’) – ...

332 Constructing Correct Software

‡ in procedural form

split_1(L) – ... ;
merge(”N1,N2’) – ... ;

sort(L) – if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_1(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ merge(”N1,N2’))

fi;
N æ sort(L)

Thus, we have an outline of a procedural program with three function declarations,
two of which have still to be filled in, and a single assignment statement which
involves the function call that kicks the whole calculation into action. The “where”
clauses used in the functional form have been replaced by assignments and ordered
as dictated, again, by the DFD. Notice the use of “«” to indicate the allowed
parallel execution of the two sub-sorts and the fact that there are no declarations for
L or N and no input or output commands. These components are part of the
program which surrounds the calculation, which is our sole concern here.

The completion of the other parts of the design, and consequential simplifications
are given in Section 7.3 (or the use of previously constructed — reusable? —
implementations of functions).

Notice that if the input list was already in ascending order, adopting the structural
splitting tactic would still decompose the list into singletons and then rebuild it to
give the output. All this despite the fact that apparently no work was really being
done, except passing the list from input to output. All this seems rather poor, but
we can always devise a list input which will cause a particular tactic to perform
badly. To fully analyse any sorting algorithm requires an extensive probabilistic
study. Remember that such considerations are secondary (to ensuring correctness)
and will not be studied in this text.

7.2.3 Predicated Splitting (Partitioning)

Recall that a structural split makes use of the (data) structure in which the integers
are presented as input. Indeed, in its most elementary form it uses only this
structure and totally ignores the actual values present. In marked contrast, the
predicate mentioned in the name of the current strategy refers to the integers and not
to the structure — the list — which is not used other than as a way of containing

Sorting 333

the integers. But, of course, by virtue of the problem we are attempting to solve,
the list structure of the output is essential.

The general strategy is to take the (bag of) data items and partition them into two
bags depending on whether they do (or do not) satisfy a chosen property. The bags
are held in lists. In the case of sorting, we take some value x and divide up the
numbers in the list into ‘lows’ (having values “≤x”) and the ‘highs’ (having values
“≥x”). Note that x itself need not be in the list, but if it is included (possibly more
than once), then it can be placed either in the ‘lows’ or ‘highs’.

So, a new split, split_2, might be

split_2: * — *Ù *
pre-split_2(L) – True
post-split_2(L,”L1,L2’) – (∃x:)

(bag_of(L) = bag_of(L1) È bag_of(L2) ¯

 (¯(y ≤ x) | y: | y in L1) ¯

 (¯(x ≤ y) | y: | y in L2))

where
(¯(y ≤ x) | y: | y in M) – (¯(y≤x) | M1,M2: *,y: | M = M1»”y’»M2)

As before, all lists of length less than 2 are already sorted, so the pre-condition can
be strengthened to reflect this. Notice that, since L is finite, it is always possible
to choose a value of x so that it is larger than all the values in L, and hence we
would have L = L1 and no progress would be made by such a split.

The simplest way to fix this is to add extra constraints:

split_3: * — *Ù *
pre-split_3(L) – #L ≥ 2
post-split_3(L,”L1,L2’) – (∃x:)

(bag_of(L) = bag_of(L1) È bag_of(L2) ¯

 (¯(y ≤ x) | y: | y in L1) ¯

 (¯(x ≤ y) | y: | y in L2) ¯

 #L1 ≥ 1 ¯ #L2 ≥ 1)

Here, once x has been used to obtain L1 and L2, it is forgotten about, indeed; if it is

a member of L, then it is placed in either L1 or L2 and may have to be re-sorted

later despite our knowing how it relates to all the items in the two new lists.

334 Constructing Correct Software

Later we shall modify the splitting process so as to make use of this information.

So, with split_3 we can set off again on the trail of a “divide and conquer” design.
For lists having two or more elements, we again have

(∃L1,L2,N1,N2: +)(”L1,L2’ = split_3(L) ¯

bag_of(N1) = bag_of(L1) ¯ bag_of(N2) = bag_of(L2) ¯

ascending(N1) ¯ ascending(N2) ¯

N = combine_3(”N1,N2’))

Notice that we could use “merge” for the combine phase but

y in N1 ¢ y ˜ bag_of(N1)

¢ y ˜ bag_of(L1)

¢ y in L1

fi y ≤ x with the x used in split_3
Similarly,

z in N2 ¢ z ˜ bag_of(N2)

¢ z ˜ bag_of(L2)

¢ z in L2

fi x ≤ z for the same x.

and thus y in N1 ¯ z in N2 fi y ≤ z. We will need this later.

Recall the other requirements for combine_3, namely

pre-combine_3(”N1,N2’) – ascending(N1) ¯ ascending(N2)

post-combine_3(”N1,N2’,N) – ascending(N) ¯

 bag_of(N) = bag_of(N1) È bag_of(N2)

By virtue of using split_3, it would seem reasonable that N could be obtained from
N1 and N2 by simple concatenation; i.e., N1»N2. Instead of trying to work this

out, we check it by substituting into the post-condition and evaluating.

Sorting 335

post-combine(”N1,N2’,N1»N2)

¢
ascending(N1»N2) ¯ bag_of(N1»N2) = bag_of(N1) È bag_of(N2)

¢ the second term is a bag axiom and so it is always True.

ascending(N1»N2)

¢
 (¯(a ≤ b) | a,b: ,N3,N4,N5: * | N1»N2 = N3»”a’»N4»”b’»N5)

¢ partition the base using 3 cases6

[— #N5 ≥ #N2

[— #N1 ≤ #N3

[— #N3 < #N1 ¯ #N2 > #N5

(¯(a ≤ b) | a,b: ,N3,N4,N5: * | N1»N2 = N3»”a’»N4»”b’»N5

¯ #N5 ≥ #N2) ¯7

(¯(a ≤ b) | a,b: ,N3,N4,N5: * | N1»N2 = N3»”a’»N4»”b’»N5

¯ #N1 ≤ #N3) ¯

(¯(a ≤ b) | a,b: ,N3,N4,N5: * | N1»N2 = N3»”a’»N4»”b’»N5

¯ #N3 < #N1 ¯ #N2 > #N5)

 introducing new list names to assist in reasoning (again see Figure 7.3, all
¢ will become clear in the next step) and deleting common end segments of

lists in the base expression.

(¯(a ≤ b) | a,b: ,N3,N4,N6: * | N1 = N3»”a’»N4»”b’»N6) ¯

[— where N5 = N6»N2]

(¯(a ≤ b) | a,b: ,N7,N4,N5: * | N2 = N7»”a’»N4»”b’»N5) ¯

[— where N3 = N1»N7]

(¯(a ≤ b) | a,b: ,N3,N4,N5: * | N1»N2 = N3»”a’»N4»”b’»N5

¯ #N3 < #N1 ¯ #N2 > #N5)

6 See how the named segments relate to each other in Figure 7.3.
7 See Exercise 5.1 for justification of this move.

336 Constructing Correct Software

N1 » N2

N1 » N2

¢ N3 » ”a’ » N4 » ”b’ » N5

(#N5 ≥ #N2)

¢ N3 » ”a’ » N4 » ”b’ » N6 » N2

¢

(#N1 ≤ #N3) N1 » N2

N1 » N2¢

(#N3 < #N1 ¯ #N2 > #N5) N1 » N2

N1 » N2¢

¢ N3 »”a’ » N4 » ”b’ » N5

¢ N1 »N7»”a’ » N4 » ”b’ » N5

¢ N3 » ”a’ » N4 » ”b’ » N5

¢ N3 » ”a’ » N8» N9» ”b’ » N5

Figure 7.3

¢ using the definition of ascend and naming parts of N4,

ascending(N1) ¯ ascending(N2) ¯

(¯(a ≤ b) | a,b: ,N3,N8,N9,N5: * |

N1»N2 = N3»”a’»N8»N9»”b’»N5)

[— where N3»”a’»N8 = N1 ¯ N9»”b’»N5 = N2

i.e., a in N1 ¯ b in N2]

¢ and recall that ascending(N1) and ascending(N2) are True,

(¯(a ≤ b) | a,b: | a in N1 ¯ b in N2)

Sorting 337

¢
(¯(a ≤ b) | a,b: | a in L1 ¯ b in L2)

¢ a in L1 ¯ b in L2 fi (∃x:)(a≤x ¯ x≤b) fi (a≤b) for some x

so if a in L1 ¯ b in L2 then a≤b ¢ True.

(¯(True) | a,b: | a in L1 ¯ b in L2)

¢
True

So our intuition that concatenation would suffice was correct, and the skeletal
design for this kind of sort is as follows:

if #L < 2
then N = L

else (∃L1,L2,N1,N2: +)

(”L1,L2’ = split_3(L) ¯

N1 = sort(L1) ¯ N2 = sort(L2) ¯

N = N1»N2)

fi

This is known as a partition sort.

Having done this ‘side work’, we can present the derivation as a formal progression
and include the appropriate paradigm shifts. These are similar to those in the
previous derivation and so will be given in less detail.

This starts in the same way as before:

post-sort(L,N)

¢ using the specification

bag_of(N) = bag_of(L) ¯ ascending(N)

338 Constructing Correct Software

¢ partitioning the domain *

if #L < 2
then bag_of(N) = bag_of(L) ¯ ascending(N)
else bag_of(N) = bag_of(L) ¯ ascending(N)

fi

¢ as before

if #L < 2
then L = N
else bag_of(N) = bag_of(L) ¯ ascending(N)

fi

∞
if #L < 2
then N = L

else (∃L1,L2,N1,N2: +)

(”L1,L2’ = split_3(L) ¯

N1 = sort(L1) ¯ N2 = sort(L2) ¯

N = N1»N2)

where
split_3: * — *Ù *
pre-split_3(L) – #L ≥ 2
post-split_3(L,”L1,L2’) – (∃x:)

(bag_of(L) = bag_of(L1) È bag_of(L2) ¯

 (¯(y ≤ x) | y: | y in L1) ¯

 (¯(x ≤ y) | y: | y in L2) ¯

 #L1 ≥ 1 ¯ #L2 ≥ 1)

fi
¢

N = (if #L < 2
then L

 else (N1»N2

where: L1,L2,N1,N2: +

N1 = sort(L1) ¯ N2 = sort(L2)

”L1,L2’ = split_3(L)

)
fi)

Sorting 339

‡ into ‘functional’ form

 [N =] sort(L) where

sort(L) – if #L < 2
then L
else (N1»N2

 where: L1,L2,N1,N2: +

N1 = sort(L1) ¯ N2 = sort(L2)

”L1,L2’ = split_3(L)

)
fi,

split_3(L) – ... ,

‡ into procedural form

split_3(L) – ... ;

sort(L) – if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_3(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ N1»N2)

fi;
N æ sort(L)

The general layout of this design is superficially similar to the merge sort, but now
all the work is concentrated in the splitting phase, about which we shall say more
in Section 7.3.3.

Notice how each of the three fundamental designs have introduced recursion as an
intermediate form and that all these recursions are different. This observation
reinforces the need to avoid recursion in the (initial) specification.

340 Constructing Correct Software

7.3 Complete Designs

With the development machinery available so far, we now try to fill in the parts of
the designs to make complete8 program schemes. We shall use the same broad sub-
divisions as in the previous section, but now we shall admit the common
classifications of the kinds of sorting algorithms obtained, namely exchange sorts,
merge sorts, and partition sorts, but be aware that the distinction is often confusing;
in array-based implementations of internal (i.e., in store) sorting, most operations
are achieved by means of exchanges. We shall follow this up further in Chapter 9.

The length of some derivation sequences might well give rise to alarm. They are so
long simply because we are presenting in some detail the manipulation of multi-
line expressions — potentially whole programs! Using a suitable software
development tool, each step can be likened to performing an edit, but instead of
changing (and hence deleting) the original, we must retain it so as to allow the
manipulation to be fully appreciated.

7.3.1 Exchange Sorts

Recall that so far we have

improve(L) – ... ;
sort(L) – (var V: *;

V æ L;
while ⁄ascending(V)

do V æ improve(V)
od;

result æ V);
N æ sort(L)

To make this scheme complete, we need to devise a design for the improve
function9. As always, we advocate some experimentation to get a feel for the ways
in which the problem might be tackled. Of course, in Section 7.1, we discussed the
effect of swapping ‘out of order’ pairs and how performing such exchanges would
eventually result in the list being ‘sorted’; but how can this idea be harnessed to
give an algorithm? Here we shall not go into the numerous different possibilities
but consider one straightforward approach — other alternatives will be discussed in
Chapter 9. First we remark that within the class of exchange-sorting algorithms,
the notion of exchange is generally interpreted as meaning the exchange of adjacent
pairs of list elements.
8 Our immediate concern is only to obtain complete designs. Other, slightly more sophisticated,
developments are given in Chapter 9.
9 It would also be reasonable to expect that we also need an implementation of the predicate
ascending; however, as we shall see, we can side-step the need for this function.

Sorting 341

So, what about improve(L)? The intention of this function is to take the list L,
known not to be ascending, and deliver another list, with the same elements, which
is ‘nearer’ to being sorted; to ‘improve’ the ordering or, put more technically, to use
improve(L), where M(improve(L)) < M(L) and M is the measure defined in Section
7.2.1. And we know that swapping elements which are relatively out of order
lowers the value of M.

We could take a very naive approach as follows.

Since ⁄ascending(L), we know that we can have

L ¢ L1»L2

where
L1 ¢ L3»”x’

L2 ¢ ”y’»L4

and
x > y.

It is tempting to try and define an implementation of improve by

improve(L3»”x’»”y’»L4) – L3»”y’»”x’»L4

By a repetition of previous arguments, it then follows that

M(L3»”y’»”x’»L4) < M(L3»”x’»”y’»L4)

so
M(improve(L3»”x’»”y’»L4)) < M(L3»”x’»”y’»L4)

and the recursion is guaranteed to terminate in a finite number of moves.

But , a given list L may include several adjacent out-of-order pairs. Thus, the
proposed definition of improve does not always give a unique answer. To be used
as an implementation, it must therefore be made deterministic. But notice also that
some work is being duplicated since we effectively have to find an out-of-order pair
to be sure that the given list is not ascending, and we then forget where this occurs
and have to find such a split all over again before we can perform the swap.

One possible modification to this approach is to add the extra condition, namely
that L1 (= L3»”x’) should be ascending, and so the x—y pair is the first out-of-

order pair, counting from left to right. (We can definitely do this because singleton
lists are known to be ascending and so this works even if L3 =”’.) Performing

improve recursively will then cause y gradually to ‘sink’ to the appropriate position
before the improve function moves further up the list.

342 Constructing Correct Software

To see how this might work, consider the sequence of lists in Figure 7.4. At each
stage, the two numbers compared (and either interchanged or not) are printed in
bold. The result of a comparison leads either to a swap, indicated by a cross, or to
no change, indicated by the two vertical parallel lines.

6 7 3 5 8 3
6 7 3 5 8 3
6 3 7 5 8 3 ------
3 6 7 5 8 3 ------
3 6 7 5 8 3
3 6 7 5 8 3
3 6 5 7 8 3 ------
3 6 5 7 8 3
3 5 6 7 8 3 ------
3 5 6 7 8 3
3 5 6 7 8 3
3 5 6 7 8 3
3 5 6 7 8 3
3 5 6 7 3 8 ------
3 5 6 7 3 8
3 5 6 7 3 8
3 5 6 7 3 8
3 5 6 3 7 8 ------
3 5 6 3 7 8
3 5 6 3 7 8
3 5 3 6 7 8 ------
3 5 3 6 7 8
3 3 5 6 7 8 ------
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8 ------

Figure 7.4

The list ”6, 7, 3, 5, 8, 3’ has six items and requires eight adjacent swaps to
become sorted into ascending order10. Each such swap comes at the end of what we
shall call a ‘pass’. Here we show nine passes. The last one does not perform a
swap; it cannot since the list is now completely sorted and hence the ascending
predicate controlling the loop would prevent this pass from being performed — but
stay with us!
1 0 Not trivial but complex enough to serve as a vehicle for illustrating the differences between the
collection of sorting algorithms that we consider.

Sorting 343

The end of each pass is indicated by the horizontal lines drawn on the right-hand
side of certain lists. Each of these lists is the result of one phase (pass) and hence
is also the starting point for the subsequent pass, if any. Any exchange sort
(performed by swapping adjacent out-of-order pairs) with this list as input needs
eight swaps but lots of other work is done in organisation of the processing. The
27 steps/comparisons are executed in passes of length 2, 1, 3 etc. (A pass of length
n involves n – 1 ‘do nothing’ steps followed by a swap or termination of the entire
sort. Notice in particular the successive passes of lengths 5, 4, 3, and 2 that drop
the second ‘3’ in the list down to its proper position.) We can do better than this,
but let’s look at this version in detail first.

We call the basic process a ripple. This swaps the lowest out-of-order pair (that
closest to the left-hand end), otherwise the list is ascending and we are done. We
define ripple by a set of rules which we want it to obey. (They can be collected
together into the usual form of specification, but we do not need this yet.) We
consider six different cases for the argument of ripple: * — *.

(1) ripple(”’) ¢ ”’ end of sort
(2) ripple (”x’) ¢ ”x’ end of sort

(3) (x ≤ y) ripple(”x, y’) ¢ ”x, y’ end of sort
(4) (x > y) ripple(”x, y’) ¢ ”y, x’ end of pass

and, when L: +,
(5) (x ≤ y) ripple(”x, y’»L) ¢ ”x’»ripple(”y’»L) and continue
(6) (x > y) ripple(”x, y’»L) ¢ ”y, x’»L end of pass

Here, cases 1, 2 and 3 effectively detect that the list is already in ascending order and
that sorting is complete. Notice that rules 1 and 2 are only ever used for empty and
singleton lists (not as parts of longer lists) and are included for completeness. They
correspond to sort in the following way:

ripple(L) = sort(L) = L

In all other cases, the bag of elements on each side of the rule is the same (as is the
case within the specification of sort) and, if ripple(L) ¢ N, either ascending(N) or
M(N) < M(L) (in fact M(N) = M(L) – 1). Applying ripple to an arbitrary non-
trivial list of integers is achieved by a finite sequence of applications of rule 5 and
then either rule 3, 4 or 6. Using rule 3 indicates that no swaps were required and
hence the list is sorted; rule 4 corresponds to swapping the end pair, and rule 6 to a
swap somewhere before the end. Try these swaps with the example given above;
ripple should describe the processing of one complete pass. On each step, each rule
application, ripple either achieves a swap (and hence reduces the M measure) or
increases the length of the front part of the list, which is known to be in ascending

344 Constructing Correct Software

order. Correspondingly, it also reduces the length of the list parameter in the next
invocation of ripple, so we could simply use ripple in place of improve and use the
rules which define ripple as the basis of an implementation.

ripple(L) – if L = ”’ then ”’
else if #L = 1 then ”first_of(L)’ etc.

and hence we would have

ripple(L) – ... ;
sort(L) – (var V: *;

V æ L;
while ⁄ascending(V)

do V æ ripple(V)
od;

result æ V);
N æ sort(L)

But what about an implementation of ascending? Notice that on the final
application of ripple, resulting from the use of rule 3, we know that at that point
the list is in order and we can use this to circumvent the need for an explicit
ascending predicate in the program code. Notice also that for a given list L there is
some value n: such that ripplen(L) = sort(L).

We can achieve such repetitions by using recursion (based on ripple but using two
parameters so as to hold the part of the intermediate answer to which ripple is not
applied in rule 5). Call this procedure exchange and use the following rule set:

exch(A,”’) ¢ A
exch(A,”x’) ¢ A»”x’

(x ≤ y) exch(A,”x, y’) ¢ A»”x, y’ end of sort
(x > y) exch(A,”x, y’) ¢ exch(”’, A»”y, x’) end of pass

and, when L: +,
(x ≤ y) exch(A,”x, y’»L) ¢ exch(A»”x’, ”y’»L) and continue
(x > y) exch(A,”x, y’»L) ¢ exch(”’, A»”y, x’»L) end of pass

To set this all in motion, we simply need to link to sort by

sort(L) – exch(”’, L)

Sorting 345

This gives the same sequence of lists as ripple, but the surrounding code can be
greatly simplified to

exch(A, B) – ... ;
sort(L) – exch(”’, L);
N æ sort(L)

Moreover, the rules for exch can be slightly reduced to

exch(A, ”’) ¢ A
exch(A, ”x’) ¢ A»”x’

and, when L: *,
(x ≤ y) exch(A, ”x, y’»L) ¢ exch(A»”x’, ”y’»L)
(x > y) exch(A, ”x, y’»L) ¢ exch(”’, A»”y, x’»L)

which gives rise to a recursive implementation scheme

exch(A, B) – if #B < 2 then A»B
else if x ≤ y then exch(A»”x’, ”y’»C)

else exch(”’, A»”y, x’»C)
where: B = ”x, y’»C

fi
fi

Of course, there are many ways in which this idea can be developed, usually to
make better use of some property of the list that we have discovered and then
‘forgotten’. We shall take this up in Chapter 9.

Exercises

7.1 Before moving on we must say something about the function exch and the
specification of sort. The progression of exch evaluations starts with

exch(”’, L) ¢ sort(L)

Henceforth, any instance of exch(A, B) is such that

 bag_of(A) È bag_of(B) = bag_of(L) ¯ ascending(A)

(and if both A and B are non-empty, then

last_of A ≤ first_of B)

346 Constructing Correct Software

Check this and confirm that the intermediate stages ‘make progress’ by improving
the ordering of A»B or by reducing the #B and hence prove that, on termination,
the final result is correct.

❑

7.3.2 Merge Sorts

Here we shall consider the basic merge sort and one simple variation.

7.3.2.1 The Basic Merge Sort

Recall the design obtained so far:

split_1(L) – ... ;
merge(”N1,N2’) – ... ;

sort(L) – if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_1(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ merge(”N1,N2’))

fi;
N æ sort(L)

Note that any non-void-splitting routine will suffice, but we shall not consider that
part of the program until later. We can immediately utilise an earlier synthesis to
complete the other function that we need.

Sorting 347

Substituting the implementation of merge from Section 3.3, we have

split_1(L) – ... ;
merge(P,Q) – (var A,B,C: *;

”A,B’ æ ”P,Q’;
C æ ”’;
while A ≠ ”’ B ≠ ”’
do if first_of(A) ≤ first_of(B)

then C æ C»”first_of(A)’; A æ rest_of(A)
else C æ C»”first_of(B)’; B æ rest_of(B)
fi

od;
result æ C»A»B);

sort(L) – if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_1(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ merge(”N1,N2’))

fi;
N æ sort(L)

7.3.3 Partition Sorts

As you can see from the top-level design in Section 7.2.3 (repeated below), most of
the work in a partition sort is concentrated in the splitting phase, and devising
clever ways to achieve the required splitting is at the heart of algorithms such as
Quicksort.

split_3(L) – ... ;

sort(L) – if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_3(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ N1»N2)

fi;
N æ sort(L)

348 Constructing Correct Software

where
split_3: * — *Ù *
pre-split_3(L) – #L ≥ 2
post-split_3(L,”L1,L2’) – (∃x:)

(bag_of(L) = bag_of(L1) È bag_of(L2) ¯

 (¯(y ≤ x) | y: | y in L1) ¯

 (¯(x ≤ y) | y: | y in L2) ¯

 #L1 ≥ 1 ¯ #L2 ≥ 1)

So, on the face of it, we need to devise a way of implementing split_3. However,
before looking at a complete partition sort, we note the following. The x in the
specification above is usually called a pivot. It is the value used to separate the
high values from the low ones and may or may not be included in the list. (In the
specification of split_3, if x is included in L, then it may be placed either in L1 or

L2, or both, if it occurs more than once.) Recall also that the

clause ‘#L1≥1 ¯ #L2≥1’ is included so as to guarantee that #L1<#L and #L2 < #L

and hence that the recursive calls of sort converge (i.e., the recursion terminates).

If we insist that the pivot, x, is an element of the input list L and that only values
strictly greater than x are placed in L2, then we can replace/refine split_3 by split_4

with the following specification:

split_4: * — *Ù Ù * — this order11 puts x ‘in the middle’
pre-split_4(L) – #L ≥ 2
post-split_4(L,”L1, x, L2’) –

(bag_of(L) = bag_of(L1) È ÊxÁ È bag_of(L2)

¯ (¯(y ≤ x) | y: | y in L1) ¯

(¯(x < y) | y: | y in L2))

Here we have three outputs. Having found x, we can hold on to it and use it within
the calculation of the answer by replacing the assignment to the final result of the
sort routine by

result æ N1»”x’»N2

Now x is in its final position, and we have fewer values to sort within the recursive
calls. And because #L = #L1 + 1 + #L2, we see that #L1 < #L and #L2 < #L, and

hence termination follows without putting lower size constraints on #L1 and #L2.

With these changes/choices, we move on.

1 1 The use of this ordering is not essential, but it is a useful indicator to subsequent developments.

Sorting 349

7.3.3.1 A Simple Partition Sort

How can we implement split_4? The idea which we seek to employ is a simple
one. We take the first item in L as the pivot and compare it with each of the
remaining elements. We place the tested elements in either the front portion or the
rear portion depending on the result of the comparison. We propose some rules12

for the process split_5: Ù *Ù *Ù * — *Ù Ù *

split_5(x, ”’, A, B) ¢” A, x, B ’ end of splitting

(x < y) split_5(x,”y’»N, A, B) ¢ split_5(x,N, A,”y’»B) y is ‘high’

(x ≥ y) split_5(x,”y’»N, A, B) ¢ split_5(x,N,”y’»A,B) y is ‘low’

and we drive this from

split_4(”x’»L) – split_5(x, L, ”’, ”’)

Using the familiar example input, we get

split_4(”6, 7, 3, 5, 8, 3’)

¢ split_5(6, ” 7, 3, 5, 8, 3’, ”’, ”’)

¢ split_5(6, ” 3, 5, 8, 3’, ”’, ”7’)

¢ split_5(6, ” 5, 8, 3’, ” 3’, ”7’)

¢ split_5(6, ” 8, 3’, ” 5, 3’, ”7’)

¢ split_5(6, ” 3’, ” 5, 3’, ”8, 7’)

¢ split_5(6, ”’, ” 3, 5, 3’, ”8, 7’)

¢ ” ” 3, 5, 3’, 6, ” 8, 7’ ’

Notice that in these rules for manipulating split_5(x, L , A , B) the bag derived
from L , A and B is constant, starting with A and B empty and ending with L
empty, so elements are conserved. Moreover, only low (≤ x) values are appended to
A and only high (> x) values are appended to B, so, starting as indicated, the final
results are as required by the specification of split_4. Notice also that the length of
the L parameter is progressively reduced and hence the recursive evaluation
terminates correctly.

Of course, all this can be expressed mathematically. Do this as an exercise.

1 2 Of course, we really only want to use these rules from left to right. They are still valid in the
reverse direction but are unproductive.

350 Constructing Correct Software

We now have
split_5(x, L, A, B) – ... ;
split_4(L) – split_5(first_of(L), rest_of(L), ”’, ”’);

sort(L) – if #L < 2
then result æ L

else (var x: ,L1,L2,N1,N2: *;

”L1, x, L2’ æ split_4(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ N1»”x’»N2)

fi;
N æ sort(L)

An implementation of split_5 follows immediately as

split_5(x, L, A, B) – if L = ”’
then ” A, x, B ’
else if x < y

then split_5(x,N, A,”y’»B)
else split_5(x,N,”y’»A,B)

where: L = ”y’»N

fi
fi

We can then combine some of these routines together13 to give

split_5(x, L, A, B) – ... ;
sort(L) – if #L < 2

then result æ L

else (var x: ,L1,L2: *;

”L1, x, L2’ æ split_5(first_of(L), rest_of(L), ”’, ”’);

result æ sort(L1)»”x’»sort(L2))

fi;
N æ sort(L)

1 3 Here the possible parallel execution of the recursive calls of sort is implicit (by virtue of the
independence of the evaluation of sub-expressions within the expression ‘sort(L1)»”x’»sort(L2) ’.

Sorting 351

Notice that when all intermediate rules for a function (such as split_5, above) are of
the form

(c) f(x) ¢ f(h(x))

— where h merely calculates the ‘new’ parameters form the ‘old’ ones and does not
involve further instances of f — the function f can be factored over the conditionals
so as to be (explicitly) tail recursive. Hence we can achieve the iterative design:

split_5(x, L, A, B) – (var M, C, D: *;
”M, C, D’ æ ”L, A, B’;
while M ≠ ”’
do

if x < first_of M
then D æ ”first _of M’»D
else C æ ”first _of M’»C
fi;
M æ rest _of M

od;
result æ ”C, x, D’)

This transformation can be routinely carried out in all similar situations. However
we shall normally not utilise this step but concentrate on those aspects which are
more specific to a given example.

So much for traditional approaches to these familiar sorting techniques. To finish
this chapter, we have something rather different.

7.4 A Quick Design

This chapter has included much detail; this has been done so as to emphasise the
need to pay great attention to aspects of program synthesis which must be followed
through very carefully. It is this attention to detail which characterises formal
methods and which also causes many programmers to despair at the amount of
effort (and care!) that is necessary14. We have already mentioned that, with
appropriate tools, many of these construction steps can be performed very quickly;
but can we do something else; can we take short cuts? Can we use the ‘big’
operators of Chapter 5?

1 4 Focussing on the construction phase, rather than the subsequent analysis and correction of errors,
means that the costing of software can be done more accurately. Empirical evidence supports claims
that overall software costs are greatly reduced by this approach.

352 Constructing Correct Software

The answer is “yes”. Below we show how this works for sorting. [Using such
powerful rules does indeed give us a design, but it also denies us the possibility of
fine tuning which might be done when developing an algorithm in smaller steps;
hence the need for the major segment of this chapter.]

The result of the sorting process is a value of type *, and this suggests that the
final step might be achieved by an induced function f* of type X* — * derived
from an associative binary function f: * Ù * — *.
So what does this say about X? Well, the result delivered by f* is a sorted list and
hence so are both inputs of f and X – *. But, all lists of length 1 are ascending,
so we might reasonably search for a function f such that

sort(L) – f* ° g*(L)

where g: — * is defined by g:x Ÿ ”x’.

Then
g*: * — (*)*

and, for example,

g*(”a, b, c’) ¢ ” g(a), g(b), g(c) ’
¢ ” ”a’, ”b’, ”c’ ’.

The required properties of f* and g* (as induced list operators) are

f*(”’) ¢ ”’
f*(”L’) ¢ L
f*(L»M) ¢ f(f*(L), f*(M))

and
g*(”’) ¢ ”’

g*(”x’) ¢ ” g(x) ’
g*(L»M) ¢ g*(L)»g*(M) .

Clearly, our g function satisfies the requirements, but what about f ? We can
actually calculate f as follows.

Sorting 353

Take two sorted lists L and M, and assume that sort – f* ° g*;

then
f(L, M)

¢ (ascending(N)) sort(N) ¢ N
f(sort(L), sort(M))

¢ f(f* ° g*(L), f* ° g*(M))

¢ f(f*(g*(L)), f*(g*(M)))
¢ f*(g*(L)»g*(M))
¢ f*(g*(L»M))
¢ f* ° g*(L»M))

¢ sort(L»M))

so we must have

f: * Ù * — *
pre-f(”L,M’) – ascending(L) ¯ ascending(M)
post-f(”L,M’,N) – N = sort(L»M)

¢ ascending(N) ¯
bag_of(N) = bag_of(L»M)

¢ ascending(N) ¯
bag_of(N) = bag_of(L) È bag_of(M)

(f is in fact merge, but we shall not pay particular regard to this observation. We
do, however, need to check that f is associative. This is left as an exercise.)

The * functions can now be directly implemented by the schemes

g*(L) – (var V: *, R:(*)*;
V æ L; R æ ”’;
while V ≠ ”’

do R æ R»””first_of(V)’’; V æ rest_of(V) od;
result æ R)

and
f*(L) – (var V:(*)*, R: *;

V æ L; R æ ”’;
while V ≠ ”’

do R æ f(R, first_of(V)); V æ rest_of(V) od;
result æ R)

354 Constructing Correct Software

To complete the program design, we need to give a declaration for f (this too we
leave as an exercise) and the link

sort(L) – f*(g*(L)).

This should all work by construction but, so as to justify this claim, we provide
the following calculations.

f* ° g*(”’)

¢ f*(”’)
¢ ”’
¢ sort(”’)

f* ° g*(”x’)

¢ f*(”g(x)’)
¢ f*(””x’’)
¢ ”x’
¢ sort(”x’)

and
f* ° g*(L»M)

¢ f*(g*(L)»g*(M))
¢ f(f* ° g*(L), f* ° g*(M))

¢ f(sort(L), sort(M))
¢ f(A, B) where: A = sort(L) and B = sort(M)
¢ C

and bag_of(C) = bag_of(A) È bag_of(B)
¯ ascending(C)

¢ C
where: bag_of(C) = bag_of(L) È bag_of(M)

¯ ascending(C)
¢ C

where: bag_of(C) = bag_of(L»M)
¯ ascending(C)

¢ sort(L»M)

So, the construction does indeed give the right answer and time spent in
reorganising the specification into the appropriate form allows us to rapidly derive
an implementation scheme.

Sorting 355

Chapter 8
Data Refinement

It is not our intention that this book should be about algorithms, but merely the
correctness concerns associated with algorithms and how they may be addressed
hand-in-hand with the construction/derivation/generation of implementations.
Another topic that comes into play when addressing more complex problems (apart
from the characterization and measurement of complexity) is that of Data
Structures. So far we have taken the stance that any data type (structure?) that is
used within a problem specification is also available in PDL. This may not be so
and hence, if we wish to model the problem structure directly in the solution, we
may have to provide a bespoke implementation of an ‘abstract’ type within our
implementation/program. In general terms, this chapter considers the replacement,
the refinement1 of data structures.

We do not study data structures here. The ways in which they are constructed and
used is more properly part of a traditional (and introductory) course on
programming — a course on coding (on how to talk to the computer). However,
we should point out that the basic purpose of data structures is to store data in ways
that facilitate its easy processing. As such, the storage and retrieval regimes go
(again) hand-in-hand. It is silly to even suggest that incompatible computation and
storage techniques should be used together (for instance, referring back to the
problem of sorting in Chapter 7, the use of conventional arrays to hold lists that
are to be merged). On the other hand, arrays may well be an appropriate storage
structure in which to perform exchange sorts.

In Section 8.1, we briefly discuss the relationship between external data types (as
given in the signature part of the specification) and internal storage structures. We
then move to the main part of the chapter (Section 8.2) to consider the translation
from one data structure to another. Here, in order to avoid the need to address more
complex issues which could only be undertaken in an extensive study of data
structures (which we have already declared as ‘out of bounds’ for us), we restrict
consideration to cases that are structurally very similar but have interpretations and
rules that are very different. Finally, as a link to further (or previous) study by the
reader, we mention the potential benefits of using other, existing or purpose-built,

data structures.
1 This is not the common notion of data refinement, but the underlying concepts are very similar.

8.1 On ‘Internal’ Data Types

The structure (the types) of the inputs and outputs of a specified function is fixed
‘by the customer’ and cannot be changed without referring back to him/her. On the
other hand, how (intermediate) data is represented and held internally can be
determined by the programmer. To facilitate the calculations — to hold relevant
data in a form that is easy to access and manipulate — is, as already noted, the real
rationale for such structures. Remember that a specification should be about the
problem, not about any potential solution per se. Internal structures may therefore
be different from the types used within the signature of the specification (which we
assume can already be represented in the system — but these usually only amount
to linked records 2) or in the post-condition. The study of data structures, and the
potentially contradictory demands of space, speed and readability, is a whole topic
on its own. We will not delve into it except in the next section, to show how the
changing of data types can be used to good effect.

8.2 Changing Data Types

Operational refinement (as presented in Section 6.1) ultimately results in the
removal of unnecessary calculations (i.e., the calculation of alternative answers
where only one is required for each valid data value). On the other hand, data
refinement is concerned with removing unnecessary data3 and generally storing the
remaining data in a more appropriate/convenient way — possibly in a newly
invented data type/structure. Of course, this data type will be derived using the
basic types and constructors described in Chapter 1, and these give rise to rules
appropriate for their manipulation.

Suppose that we have some function f calculated by a sequence of smaller
calculations f1, f2, etc., with intermediate results d2, d3, etc., as depicted in Figure

8.1. The idea behind data refinement is that we can ‘translate’ each of the values
d1, d2, etc., into a reduced (less detailed?) form so, for example, a1 ¢ reduce(d1)

and similar translations exist for d2, d3, etc. And the function reduce must be

applicable to all possible values that can occur in the sequence d1, d2, ... , dn.

d1 dnd3d2
f1 f2

Figure 8.1
2 The way in which they are linked effectively defines (the structure of) these new, internal,
structures.
3 This might not be simply the deletion of individual data values but may involve the ‘re-coding’ of
information into different data values. The essential point is that we may not be able to retrieve all the
original data by reversing the process; however, enough information to solve the problem can be
extracted.

358 Constructing Correct Software

Suppose that there are functions g1, g2, etc., which act on the a values in a way

that corresponds to the f functions acting on d1, d2, etc., as in Figure 8.2.

d1 dnd3d2

ana3a2a1

f1 f2

g2g1

reduce reduce

Figure 8.2

We make two observations. Firstly, whichever route we take from d1 to an, we

want to get the same answer; in particular, for any value d1, we require that

reduce ° f(d1) ¢ g ° reduce(d1)

 where dn ¢ f (d1) and an ¢ g(a1),

 and f – fn–1 ° fn-2 ° ... ° f2 ° f1, and similarly for g.

And, since dn is the answer to the original calculation, it should contain no

redundant information; therefore an should hold exactly the same information as dn,

but it may be in a different form. We therefore have the possibility of the
computation sequence as set out in Figure 8.3.

We can also translate at any intermediate stage (for example reduce(d2) = a2), and

hence many other paths from a1 to dn are possible.

d1 dn

ana3a2a1 g2g1

?

Figure 8.3

The hope here is that the g functions, deduced from the corresponding f functions
so as to fit with the reduce (or translate) function, are easier to carry out because
they have less information to manipulate and those manipulations are somehow
easier to perform.

Data Refinement 359

Of course, the reduction steps of d1 to a1 (and d2 to a2, etc.) can coincide with other

refinement strategies, so this might give us nothing ‘new’; however, we should be
aware of the possibility of information loss.

But we do not need to delve into data structures which have more complicated
‘shapes’, we can adequately illustrate the concept of data refinement by reference to
structures which, on paper, look like lists. These are sets, bags, lists and
(1-dimensional) arrays. We consider explicit representations of finite examples of
such ‘structures’.

Textually, sets, bags, lists and (the contents of) arrays4 are all written as lists,
albeit with different bracketing. We now itemise some of the important
differences.

When translating from:

(a) a set to a list we impose an ordering
(and in reverse, we must delete duplicates)

(b) a bag to a list we again impose an ordering
(in reverse, there is no problem)

[Note that these translations to lists are not well-defined since many list
orderings are possible and legal. Without some explicit ordering process, the
‘translation’ is not a proper function. However, since every time we write down
a sequential representation we use a list, there is no problem. Similarly,
storing a set or bag sequentially already gives us such an order that can be used
directly in the translation into a list.]

(c) a set to a bag is OK (but again in the reverse direction
we must delete duplicates) and

(d) a list (L) to an array (A)
providing that #L < #A translation is easy, but

(in PDL, and many programming languages) the bounds of A, p and q, say, are
generally fixed when A is created/declared. Here, ‘growing’ A by appending X
values to either end is not always possible. If #L = #A and L is mapped directly to
A using the straightforward5 translation, then the array version of

L æ (rest_of L)»”first_of L’

requires that all elements of A be ‘moved’. This is an overhead, which hardly
seems to be a computational gain.
4 The contents of one of these array is a list.
5 Rather than a more complex ‘circular’ implementation scheme.

360 Constructing Correct Software

Despite the similarities between these four structures, they each have certain
individual characteristics. So, using proper notations, we can now get more
formal.

Taking X as the generic base type and x:X as an arbitrary element, typical
predicates and (interrogatory) functions which must be ‘translated’ appropriately
include:

(a) a finite set S is declared as S: (X)
and “is x in S?” is represented by x˜S

(b) a bag B is declared as B: (X)
and “how many x’s in B?” by x#S

(c) a list L is declared as L:X*
and “is x in L?”

by (∃L1,L2,:X*)(L = L1»”x’»L2)

and, if x in L,
“where is (the first instance of) x in L?” by #L1+1

 where: (∃L1,L2,:X*)(L = L1»”x’»L2)

 and ⁄(x in L1), and

(d) an array A denoted by A: array [p..q] of X
(or A[p..q]:Xn, where n = q – p + 1)

then
“x in A” is represented by (∃i:)(p ≤ i ≤ q A[i] = x)

and, if x in A then
“where is the first instance of x in A?” by i

where: (A[i] = x (Åj:)(p ≤ j < i A[j] ≠ x))

In sets and bags the order of elements is insignificant, but removing or ignoring
any ordering can be difficult to achieve. Often, it is the case that some ordering
(perhaps induced from an ordering on X if such an ordering is available or can be
devised) can usefully be employed when either counting duplicates or ensuring that
there are none. (This has nothing to do with translations between these types, but
merely the storing of sets and bags.) Usually, sets and bags are stored as lists, and
the implicit ordering used by this regime can usefully be employed in subsequent
translation.

[Note that once we have a translation function of type X — Y , it must also
preserve operations. Suppose that bop is a binary operation on X, and mop is a
monadic operation on X . We require that bop' and mop' be corresponding
operations on Y values.

Data Refinement 361

The correspondence required is explicitly given by the rules

trans(x1 bop x2) ¢ trans(x1) bop' trans(x2)

and
trans(mop x) ¢ mop'(trans(x))

These rules must apply to ‘all’ of X. (At least, to that part of X that we require
them to. They need to be applicable to all legal situations which arise when
performing calculations in type X.)

But perhaps they do not yield all values in Y, and hence we cannot expect that the
inverse relation, trans–1, will be a function. And even if trans–1 is a function, it
may not always be the case that

trans–1 ° trans(x) ¢ x for all the x:X that we need.

But the other way round, trans ° trans–1(y,) may not even be possible or legal for

arbitrary y:Y, and the rule

trans ° trans–1(y) ¢ y may be a complete non-starter.

However, if both of these rules are universally valid, then the translation is totally
reversible and should be very easy to perform — both forwards and backwards. It
also follows that we are not likely to gain much benefit from the translation. In
effect, we have a data transformation rather than a proper reduction. (The
distinction is the same as the operational transformation/reduction discussed in
Chapter 6.)]

We now concentrate on one specific and important translation, the translation from
a list to a 1-dimensional array. Despite the fact that the contents of such an array is
a list, there are major differences between them. We should expect that these are
mainly concerned with the fact that lists can grow, at either end, and arrays do not
normally have this property. In the reverse direction, arrays cannot shrink, but we
may be able to map a list onto part of an array, and this leaves some space for
subsequent expansion.

Suppose (either by working in situations where this cannot arise or by planning)
that we can avoid ‘running out of space’. Let’s look at how list operations might
relate to operations on a corresponding array.

362 Constructing Correct Software

Specifically, suppose that A is bounded by (indices) p and q and that we wish to
translate the list L (where #L ≤ p –q +1) onto part of A. Or, put another way, we
load a contiguous part of A with (the values of) L.

So, with a,b: , we have the following correspondences:

L maps to A[a..b] providing that p ≤ a ≤ b ≤ q

L =”’ to a > b

#L = 1 to a = b

#L to b – a + 1

and, providing that a≤ b,

first_of L to A[a]
last_of L to A[b]
rest_of L to A[a+1..b]

and
front_of L to A[a ..b–1]

Further, if M»N is a sublist of L,

i.e., L = L1»M»N»L2

with M as A[I..J]
 and N as A[J+1 ..K] where: a ≤ I ≤ J ≤ K ≤ b

then, when I ≤ J, the assignment

”M, N’ æ ”front_of M, ”last_of M’»N’

may be implemented, within A, simply by: J æ J–1

And, similarly, when J≤K,

”M, N’ æ ”M»”first_of N’, rest_of N’
 by: J æ J+1

But other operations can be fairly complex within either data type; for example,
swapping the left-most element of M and the right-most element of N is achieved
by

”M, N’ æ ””last_of N’»(rest_of M), (front_of N)»”first_of M’’
providing that (I ≤ J and J+1≤ K)

and the array version is

”A[I], A[K]’ æ ”A[K], A[I]’

Data Refinement 363

Now we look at some specific examples.

Example 8.1
Recall Exercise 3.6, in which we derived a recursive scheme for finding the
maximum value, m, in a non-empty list, L, of integers. This was

Listmax(L) – (if #L < 2 then first_of(L)
else Listmax(reduce(L)) fi);

reduce(”x,y’»C) – ”if x ≤ y then y else x fi’»C;
m æ Listmax(L)

Removing the recursion, we can delete the Listmax function and use the rule

m æ Listmax(L)
¢

begin var v: *;
v æ L;
while #v ≥ 2

do v æ reduce(v)
od;

m æ first_of(v)
end

where:
reduce(”x,y’»C) – ”if x ≤ y then y else x fi’»C.

Coding this directly into an array-based scheme – providing that #L ≤ #A – we
have

A[1..n] æ n:L; [or A æ n:L] (6)
”a,b’ æ ”1,n’;
while a < b

do
if A[a] ≤ A[a+1]

then skip
else A[a+1] æ A[a]

fi;
a æ a+1

od;
m æ A[a]

❑

6 Although not used in this example, the reverse transformation would be L æ *:A [p ..q] or
L æ *:A. In both cases, ordering is preserved so as to ensure ‘well-definedness’.

364 Constructing Correct Software

This solves the problem but also may corrupt the (initial contents of the) array. Of
course, this does not matter since the specification7 does not require this, but, by
way of investigating the potential of using arrays, we consider some variants of
this problem and its solution.

Example 8.2
Notice that within the version above, the ‘largest so far’ element is moved up the
array from left to right and is eventually in A[n] (and a = b =n).

Recall that we used the first two elements of L simply because they were easy to
access. Alternatively, we could use the end elements, in which case we would
define reduce as

reduce(”x’»C»”y’) – if x ≥y then ”x’»C else ”y’»C fi.

With the same lead in as before, this would give rise to

while a < b
do

if A[a] ≥ A[b]
then skip
else ”A[a], A[b]’ æ ”A[b], A[a]’

fi;
b æ b–1

od;
m æ A[a]

Now we have a swap rather than a simple over-write but, at the end of processing,
A[1..n] holds a shuffled copy of L, which might be useful in other situations. But,
of course, we are doing more work than is required by the original problem
statement.

❑

7 Since we ‘call by value’, the input cannot be changed. However, the array A is an internal item,
initialised by L, and it is A, not L, that is corrupted – but in a controlled way that we can exploit.

Data Refinement 365

Example 8.3
A final variant, not deduced from the original scheme, uses indexing, which, of
course, is a feature of arrays not directly available in lists.

”a,b’ æ ”1,n’;
i æ a; ”m, i’ æ ”A[i], i + 1’;
while i ≤ b

do
if m ≤ A[i]

then m æ A[i]
else skip

fi;
i æ i+1

od;
[result æ] m

Upon exit, A[1..n] remains unchanged; we have done no (extra, unnecessary?) work
in moving items around. And we could modify the central loop to

while i ≤ b
do

if m ≤ A[i]
then m æ A[i]; j æ i
else skip

fi;
i æ i+1

od with j initialised to 1.

And, if j ≠ 1 on exit, we could apply the assignment

”A[1], A[j]’ æ ”A[j], A[1]’

and place a maximal value in the A[1] position, but even this may not be required.
❑

Loading an array, or part of an array, with values from a given list is a classic
example of a situation in which the input (the list) is left unchanged — as it
should be if it is the input to a function — but once its value(s) is (are) placed in
the array, we can manipulate and move the data in our search for the ‘answer’.

Hence, as in the next example, we can utilise (tail-recursive) parameterless
procedures naturally and to great effect. We shall not cross-refer all the details, but
the reader may find it useful to have a quick re-read of the beginning of Section 3.3
and Section 4.5.

366 Constructing Correct Software

Example 8.4
In Chapter 7 (Section 7.3.1), we derived a recursive implementation for an
exchange sort using lists. This worked as shown in Figure 8.4 (and Figure 7.4),
and the code8 was as follows:

exch(C, D) – if #D < 2 then C»D
else if x ≤ y then exch(C»”x’, ”y’»E)

else exch(”’, C»”y, x’»E)
where: D = ”x, y’»E

fi
fi;

sort(L) – exch(”’,L)

We now move to an array-based scheme. Here L is loaded into A[1..n], C into
A[i..j], and D into A[p..q], the indices being global. The exch function can then be
translated into a recursive procedure, exchp, and linked to sort as

exchp – if q - p + 1 < 2 then skip
else if A[p] ≤ A[p + 1]

then ”j, p’ æ ”j + 1, p + 1’; exchp
else ”A[p], A[p + 1]’ æ ”A[p + 1], A[p]’;

”i, j, p’ æ ”1, 0, 1’; exchp
fi

fi;
sort(L) – A[1..n] æ L; ”i, j, p, q’ æ ”1, 0, 1, n’; exchp

from which we can move easily to an iterative version of sort:

A[1..n] æ L; ”j, p’ æ ”0, 1’;
while n – p ≥ 1

do if A[p] ≤ A[p + 1]
then ”j, p’ æ ”j + 1, p + 1’
else ”A[p], A[p + 1]’ æ ”A[p + 1], A[p]’;

” j, p’ æ ”0, 1’
fi

od
❑

8 We have used different identifiers so that A can be used to name the underlying array in the sequel.

Data Refinement 367

6 7 3 5 8 3
6 7 3 5 8 3
6 3 7 5 8 3 ------
3 6 7 5 8 3 ------
3 6 7 5 8 3
3 6 7 5 8 3
3 6 5 7 8 3 ------
3 6 5 7 8 3
3 5 6 7 8 3 ------
3 5 6 7 8 3
3 5 6 7 8 3
3 5 6 7 8 3
3 5 6 7 8 3
3 5 6 7 3 8 ------
3 5 6 7 3 8
3 5 6 7 3 8
3 5 6 7 3 8
3 5 6 3 7 8 ------
3 5 6 3 7 8
3 5 6 3 7 8
3 5 3 6 7 8 ------
3 5 3 6 7 8
3 3 5 6 7 8 ------
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8 ------

Figure 8.4

The move from a set S: (X) to its size #S: is typical of a genuine possible loss
of information that we might encounter.

We now turn to a familiar example (and one in which the translation function is
everywhere invertible, so there is no actual loss of information but merely a
change in representation) which we last saw in the guise of a list. We start with
the design for the calculation of the factorial function obtained in Chapter 4.

368 Constructing Correct Software

Example 8.5 The Factorial Function (continued)
Earlier, we derived schemes for the calculation of factorials based on the rule

fact(n) ¢ mult+(”1..n’)

and two designs for the function mult+, given by

mult+(L) – begin [...]
z æ first_of(L);
M æ rest_of(L);
while #M ≠ 0

do z æ mult(z, first_of(M));
M æ rest_of(M)

od;
z

end
and

mult+(L) – begin [...]
z æ last_of(L);
M æ front_of(L);
while #M ≠ 0

do z æ mult(last_of(M),z);
M æ front_of(M)

od;
z

end

Of course, this is a very special, unusual, situation where the list holds a run of
consecutive integer values. So, instead of using the list M (= ”p..q’), say, we
can simply use integer variables p and q. All the references to M must then be
changed, and we achieve the more familiar versions of the factorial calculation.

The core of this ‘left-to-right’ design becomes

z æ 1; p æ 2; q æ n;
while p ≤ q

do z æ z * p; p æ p + 1
od;

z

Data Refinement 369

which optimises to

z æ 1; p æ 2;
while p ≤ n

do z æ z * p; p æ p + 1
od;

z

Likewise, the core of the ‘right-to-left’ program scheme becomes

z æ n; p æ 1; q æ n – 1;
while p ≤ q

do z æ q * z; q æ q – 1
od;

z

which then gives

z æ n; q æ n – 1;
while 1 ≤ q

do z æ q * z; q æ q – 1
od;

z

These are the familiar algorithms for calculating factorials. They both follow quite
routinely from our initial abstract specification, but it is not very easy to transform
one final version into the other.

❑

Notice that when using operational/design refinement the calculations are
manipulated in a compositional fashion (i.e., we can change the content of any
‘box’ without the need to change any other parts of the DFD). In contrast, to gain
maximum benefit from data refinement, it cannot be compositional; if we change
the way in which one piece of software stores data, then we must also change the
way in which other software retrieves it.

8.3 Where to Next?

Knowing that you want to use arrays in your final implementation may well
influence the way in which you use and organise lists. Indeed, we shall see
examples of this in the next chapter.

370 Constructing Correct Software

The ability to use other structures (and to create new ones appropriate to the task in
hand) opens up many possibilities to process the data in either a more ‘natural’
way, perhaps mirroring some ‘non-computer’ solution, or in a more ‘abstract’
fashion driven by the dictates of the computation and, at a lower level, looking
nothing like the original problem.

Any study of data structures will include examples of common structures and their
use in well-known algorithms. But once the methods for the creation of such
structures (at the level of space allocation, pointer manipulation, etc.) have been
covered, it is desirable that an algorithm and any data structures be developed
together. It therefore follows that there is little general theory linking algorithms
to data structures; each example has to be developed individually.

We have already mentioned that certain processes and certain storage regimes do not
mix well. The example cited was the use of arrays and sorting by the merging of
ordered lists. A special case of merging is insertion. Suppose we have an ordered
sequence of integers on which we need to perform insertions and deletions. If we
store the integers in a simple 1-dimensional array (rather than in an array indexed
indirectly via a secondary array which determines the ordering of items in the first),
then performing either an insertion or a deletion requires that we ‘shuffle’ some of
the array contents either to make space for a new value or to close up what would
otherwise be a gap in the array.

Now consider (briefly and only in outline) the storing of an ordered list of integers
in a tree rather than in an array. We input the list and construct the tree by
inserting the integers into the tree one at a time as they are read. Hence, the shape
of the tree is determined by the order of the input list. If the given list was in
(ascending or descending) numerical order, the tree would be completely one-sided
with the top item, the root, being the first read and the last being the only leaf
node, as far away as possible from the root and the tree being of maximum height.
So reading the list ” 7, 9, 10, 20, 30’ from left to right gives the tree in Figure
8.5.

Data Refinement 371

9

20

7

10

30

Figure 8.5

With input ” 9, 20, 7, 10, 30’, we would get the tree depicted in Figure 8.6.

9

207

10 30

Figure 8.6

The second of these (Figure 8.6) may well be regarded as ‘better’, basically because
it is ‘lower’ and hence the elements can be reached, from the root (the ‘top’, in
computing, trees are generally drawn upside-down), in fewer moves. Of course, we
can balance the tree (periodically or on every update, i.e., insertion or deletion) to
lessen the height as much as possible. Figure 8.6 might therefore be regarded as a
balanced version of Figure 8.5, although the tree in Figure 8.7 might be more
usually expected. Of course, there are others, and in some cases we may wish to
leave ‘gaps’ to aid subsequent processing.

9

20

7 10

30

Figure 8.7

372 Constructing Correct Software

Using a tree, insertion is easy; we simply grow another leaf and link it
appropriately, as shown by the insertion of ‘8’ into Figure 8.6 to give Figure 8.8.
We do not need to shuffle existing elements of an array to make room.

9

20

10 30

7

8

Figure 8.8

Deletions are also easy but not quite so straightforward 9. Removing a leaf node is
simple. Deletion of ‘10’ from Figure 8.8 yields the tree in Figure 8.9.

9

20

30

7

8

Figure 8.9

However, deletion of any non-leaf value requires reorganisation within the tree so
as to prevent other values from being ‘cut off’. This can usually be achieved in
different ways, even with these small examples. Deleting the value ‘20’ from the
tree in Figure 8.8 can give either of the two trees depicted in Figure 8.10.

9

10

30

7

8

9

10

307

8

Figure 8.10

9 The kind of tree used here cannot handle empty lists but a simple variant, which only holds data at
leaf nodes, will cope with this and obviate the need to delete values held at internal nodes — another
‘problem’ with our simple trees — as we shall soon see.

Data Refinement 373

That was a brief digression into the possible use of a certain kind of tree data
structure and is as far as we go. Remember, once you have understood the
common structures you can (and probably should) invent your own to fit the given
situation. But remember, particularly when considering computational complexity
(the ‘cost’ of performing a computation, another subject that we do not consider
here but which is very important - that accessing data from structures involves
extra cost. These costs that are often ignored. The indexing of an array, or the
following of a list pointer, to reach the required element is not free. Moreover, the
cost can be dependent not only on the structure of your program (and the structures
you used) but the way that such structures are implemented and accessed by the
system software and even the characteristics of the underlying hardware.

374 Constructing Correct Software

Chapter 9
Sorting Revisited

We now present some variants of the high-level designs given in Chapter 7. We
shall use the same broad sub-divisions used there, namely exchange sorts, merge
sorts and partition sorts — but beware that the distinction is often confusing, and
that in array based implementations most operations are achieved by means of
exchanges.

9.1 Exchange Sorts

In Section 7.3.1, we took the general ‘reduction’ tactic in the form of

improve(L) – ... ;
sort(L) – (var V: *;

V æ L;
while ⁄ascending(V)

do V æ improve(V)
od;

result æ V);
N æ sort(L)

and provided a full implementation based on the function ripple, in which we
moved through the list from left to right, testing the order of adjacent pairs and
either finding none to be out of order or, on encountering the first out-of-order pair,
we swapped the two elements and started back at the left end, processing the altered
list.

From ripple, we obtained exch, and linked it to the sort problem by

exch(A, B) – ... ;
sort(L) – exch(”’, L);
N æ sort(L)

where exch is subject to the rules

exch(A, ”’) ¢ A
exch(A, ”x’) ¢ A»”x’

and, when L: *,
(x ≤ y) exch(A, ”x, y’»L) ¢ exch(A»”x’, ”y’»L)
(x > y) exch(A, ”x, y’»L) ¢ exch(”’, A»”y, x’»L)

From these rules, we routinely obtained the implementation design:

exch(A, B) – if #B < 2 then A»B
else if x ≤ y then exch(A»”x’, ”y’»C)

else exch(”’, A»”y, x’»C)
where: B = ”x, y’»C

fi
fi

We now develop this idea in two related ways. First, we continue each ‘ripple’ all
the way up the list and hence may swap more than one mis-ordered pair in a single
pass; we call this function full_ripple. Alternatively, we could, on finding a
number that is lower than its predecessor, let it ‘sink’ all the way back to its
‘correct’ position in the segment to the left of the current exchange and then proceed
up the list as in the previous algorithm.

So, we turn our attention to ‘full_ripple’.

Starting with the same initial list of integers, we have the progression depicted in
Figure 9.1.

Again, the last pass changes nothing and could be used to affirm that the resultant
list satisfies the ascending condition.

The rules for full_ripple are

(1) full_ripple(”’) ¢ ”’ end of sort
(2) full_ripple (”x’) ¢ ”x’ end of sort

(3) (x ≤ y) full_ripple(”x, y’) ¢ ”x, y’ end of pass
(4) (x > y) full_ripple(”x, y’) ¢ ”y, x’ end of pass

and, when L: +,
(5) (x ≤ y) full_ripple(”x, y’»L) ¢ ”x’»full_ripple(”y’»L)

and continue
(6) (x > y) full_ripple(”x, y’»L) ¢ ”y’»full_ripple(”x’»L)

and continue

376 Constructing Correct Software

6 7 3 5 8 3
6 7 3 5 8 3
6 3 7 5 8 3
6 3 5 7 8 3
6 3 5 7 8 3
6 3 5 7 3 8 ------
3 6 5 7 3 8
3 5 6 7 3 8
3 5 6 7 3 8
3 5 6 3 7 8
3 5 6 3 7 8 ------
3 5 6 3 7 8
3 5 6 3 7 8
3 5 3 6 7 8
3 5 3 6 7 8
3 5 3 6 7 8 ------
3 5 3 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8 ------
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8
3 3 5 6 7 8 ------
3 3 5 6 7 8

Figure 9.1

This is very similar to ripple, but for non-trivial inputs each pass only terminates
with rules 3 or 4. These rules always place the larger of x and y at the right-hand
end. In rules 5 and 6 (applied left to right), the larger value of x and y is carried
forward to the next evaluation of full_ripple, moving the value to the right. Hence,
after a complete pass, the right-most value is maximal. This can be used to great
effect in the variant of ‘exchange’ based on full_ripple.

Sorting Revisited 377

We call this exch(ange)_2, and its rules are

exch_2(A, ”’) ¢ A end of sort
exch_2(A, ”x’) ¢ A»”x’ end of sort

(x ≤ y) exch_2(A, ”x, y’) ¢ exch_2(”’, A»”x’)»”y’ end of pass
(x > y) exch_2(A, ”x, y’) ¢ exch_2(”’, A»”y’)»”x’ end of pass

and, when L: +,
(x ≤ y) exch_2(A, ”x, y’»L) ¢ exch_2(A»”x’, ”y’»L) and continue
(x > y) exch_2(A, ”x, y’»L) ¢ exch_2(A»”y’, ”x’»L) and continue

which is driven from the link

sort(L) – exch_2(”’, L)

We can see that not only are the bags of integers preserved by all the rules but that,
when a pass is started, within exch_2(A, B) the only elements appended to A are
ones of equal or lesser value than some element remaining in B. Hence each pass
results in placing a maximal element at the right-hand end of the list, and only the
‘front_of’ portion of the current list is processed further. How this copes with our
standard example list is shown in Figure 9.2.

Once the maximal elements have been moved into position (here one on each pass,
but in other examples this could be many more), then we move back to the
beginning and start processing again with the revised list. Holding the list in an
array, we can easily note the position of the ‘last’ swap on each pass; this gives us
what isgenerally called a bubble sort, but we shall not pursue this possibility.
However, notice that, presented with a list of length n that is already in ascending
order, exch_2 will still perform n – 1 passes, each confirming the correct position
of just one element and never changing the list at all. This is indicated by the
‘staircase’ in Figure 9.2.

The processing of all non-empty lists terminates with the singleton rule with
A = ”’. The empty rule is also only applicable when A = ”’.

378 Constructing Correct Software

6 7 3 5 8 3
6 7 3 5 8 3
6 3 7 5 8 3
6 3 5 7 8 3
6 3 5 7 8 3
6 3 5 7 3 8 ------
3 6 5 7 3 8
3 5 6 7 3 8
3 5 6 7 3 8
3 5 6 3 7 8 ------
3 5 6 3 7 8
3 5 6 3 7 8 ------
3 5 3 6 7 8
3 5 3 6 7 8 ------
3 3 5 6 7 8 ------
3 3 5 6 7 8 ------

Figure 9.2

Hence we have, as another complete exchange sorting program

exch_2(A, B) – if #B < 2 then A»B
else if #B = 2

then if x ≤ y
then exch_2(”’, A»”x’)»”y’
else exch_2(”’, A»”y’)»”x’

where: B = ”x, y’
fi

else if x ≤ y
then exch_2(A»”x’, ”y’»C)
else exch_2(A»”y’, ”x’»C)

where: B = ”x, y’»C
fi

fi
fi;

sort(L) – exch_2(”’, L);
N æ sort(L)

which can be further simplified.

Next we essentially apply the same technique, twice, in opposite directions. We
move high values up the list and, on encountering a small value, we move it down.
We avoid further explanation and merely present the rules for the exchange
function, exch_3:

Sorting Revisited 379

exch_3(A, ”’) ¢ A end of sort
exch_3(A, ”x’) ¢ sink(A, x) end of sort

and, when L: *,
(x ≤ y) exch_3(A, ”x, y’»L) ¢ exch_3(A»”x’, ”y’»L) and continue
(x > y) exch_3(A, ”x, y’»L) ¢ exch_3(B, ”x’»L) and continue

where: B = sink(A, y)
and sink satisfies the rules:

sink(”’, y) ¢ ”y’
(a ≤ y) sink(X»”a’, y) ¢ X»”a’»”y’
(a > y) sink(X»”a’, y) ¢ sink(X , y)»”a’

As before, this is driven by

sort(L) – exch_3(”’, L)

With the usual example list, we get the following progression of evaluation steps:

sort(”6, 7, 3, 5, 8, 3’)
¢

exch_3(”’, ”6, 7, 3, 5, 8, 3’)
¢

exch_3(”6’, ”7, 3, 5, 8, 3’)

and sink(”6’, 3)
¢

sink(”’, 3)»”6’
¢

”3’»”6’
¢

”3,6’

¢
exch_3(”3,6’, ”7, 5, 8, 3’)

and sink(”3,6’, 5)
¢

sink(”3’, 5)»”6’
¢

”3’»”5’»”6’
¢

”3,5,6’

380 Constructing Correct Software

¢
exch_3(”3,5,6’, ” 7, 8, 3’)

¢
exch_3(”3,5,6,7’, ” 8, 3’)

and sink(”3,5,6,7’, 3)
¢

sink(”3,5,6’, 3)»”7’
¢

sink(”3,5’, 3)»”6,7’
¢

sink(”3’, 3)»”5,6,7’
¢

”3’»”3’»”5,6,7’
¢

”3,3,5,6,7’

¢
exch_3(”3,3,5,6,7’, ”8’)

¢
exch_3(”3,3,5, 6,7,8’, ”’)

¢
”3,3,5,6,7,8’

These two functions can be incorporated in yet another sorting program as

exch_3(A, B) – if #B = 0 then A
else if #B = 1

then sink(A, first_of B)
else if x ≤ y

then exch_3(A»”x’, ”y’»C)
else exch_3(sink(A, y), ”x’»C)

where: B = ”x, y’»C
fi

fi
fi;

sort(L) – exch_3(”’, L);
sink(A, y) – if #A = 0 then ”y’

else if a ≤ y
then A»” y’
else sink(X , y)»”a’

 where: A = X»”a’
fi

fi;
N æ sort(L)

Sorting Revisited 381

This is not the only way of describing (coding) this particular process using sink.
Using a different intermediate function name (so as to try to avoid confusion), we
could use the following linking rules

sort(L) ¢ exch_4(”’, L)
exch_4(A, ”’) ¢ A

and
exch_4(A, ”x’»B) ¢ exch_4(C, B)

where: C =sink(A, x)

with the same sink rules as before. Here, all the relational testing (between list
elements) is done by sink, so the exch_4 rules are much simpler.

Another possibility involves alternating full sweeps through the middle section of
the list, moving a high number to the right and then back in the opposite direction.
moving a low number to the left, and back sweeping to the right. At each stage, at
least one (high or low) moves to the correct position (possibly more than one) and
the middle segment of unsorted values gets smaller. This gives rise to a sorting
technique know as the Cocktail Shaker. We leave the formulation of rules and
the derivation of an algorithm as an exercise to the reader.

382 Constructing Correct Software

9.2 Merge Sorts

We shall now present some simple variations on the basic merge sort.

Recall the design obtained so far

split_1(L) – ... ;
merge(”N1,N2’) – (var A,B,C: *;

”A,B’ æ ”N1,N2’;

C æ ”’;
while A ≠ ”’ B ≠ ”’
do if first_of(A) ≤ first_of(B)

then C æ C»”first_of(A)’; A æ rest_of(A)
else C æ C»”first_of(B)’; B æ rest_of(B)
fi

od;
result æ C»A»B);

sort(L) –if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_1(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ merge(”N1,N2’))

fi;
N æ sort(L)

where split_1 is specified by

split_1: * — *Ù *

pre-split_1(L) – #L ≥ 2
post-split_1(L,”L1,L2’) – L = L1»L2 ¯ #L1 ≥ 1 ¯ #L2 ≥ 1

First note that any non-void splitting routine will suffice, and it is the choice of
splitting strategy which dictates how different merge sorts work. Such choices may
also facilitate specialisations in the merge function, as we shall see.

Sorting Revisited 383

9.2.1 Variants of the Merge Sort

This basic design of a merge sort can be refined (particularised) in several ways.
For instance, split_1 may be replaced1 by a deterministic version, as in

split_6: + — +Ù +

pre-split_6(L) – #L ≥ 2
post-split_6(L,”L1,L2’) – L = L1»L2 ¯ #L1 = 1

With this version, the left-hand sorting sub-process involves no calculation and the
merge becomes an insertion, giving us what is classically regarded as an insertion
sort. We now present a reasoned derivation of this algorithm.

Using the familiar “first_of” and “rest_of” operations, a useful rearrangement of
post-split_6 would seem to be

L1 = ”first_of(L)’ ¯ L2 = rest_of(L)

As always, we should check. First notice that #L ≥ 2 fi #L ≥ 1, so the first_of
and rest_of functions are defined and we can apply the conditional rule

 (#L ≥ 1) ”first_of(L)’» rest_of(L) ¢ L

So, substituting ”first_of(L)’ for L1 and rest_of(L) for L2 in the post-condition,

we get

post-split_6(L,””first_of(L)’, rest_of(L)’)
¢

L = ”first_of(L)’»rest_of(L) ¯ #”first_of(L)’ = 1
¢

L = L ¯ 1 = 1
¢

True i.e., the solution checks out OK

1 Note that although the signature of split_6 is more restrictive than that of split_1, this is still a
refinement since the restriction imposed by pre- split_1 and post-split_1 forces the input and outputs to
be non-empty lists.

384 Constructing Correct Software

Substituting back into the merge sort scheme gives

‡ split_6(L) – ... ;
merge(”N1,N2’) – ... ; — NB see2

sort(L) – if #L < 2
then result æ L

else (var L1,L2,N1,N2: +;

”L1,L2’ æ split_6(L);

N1 æ sort(L1) « N2 æ sort(L2);

result æ merge(”N1,N2’))

fi;
N æ sort(L)

But now #L1 = 1 and so sort(L1) = L1. In fact, the implementation of split_6 is so

simple that it can be removed altogether to give

¢ merge(”N1,N2’) – ... ;

sort(L) – if #L < 2
then result æ L

else (var N2: +;

N2 æ sort(rest_of(L));

result æ merge(””first_of(L)’,N2’))

fi;
N æ sort(L)

And merge can now be simplified since we know its first argument is always of
length 1,

merge_1: *Ù * — *
pre-merge_1(”N1,N2’) – #N1 = 1 ¯ ascending(N2)

post-merge_1(”N1,N2’,N) – ascending(N) ¯

 bag_of(N) = bag_of(N1) È bag_of(N2)

2 Although this is the formally correct notation, we shall accept the conventional, but strictly illegal,
shorthand by writing the function with two parameters, like ‘merge(N1,N2)’, rather than a single
parameter that happens to be a pair. A transformation tool might require the syntax to be more strict.

Sorting Revisited 385

Since N1 is always of the form ”x’, merge_1 can sensibly be re-written as insert

where insert(”x,N2’) – merge_1(””x’,N2’) and, as before,

insert: Ù * — *
pre-insert(”x,N2’) – ascending(N2)

post-insert(”x,N2’,N) – ascending(N) ¯

 bag_of(N) = bag_of(N1) È ÊxÁ

to give

¢ insert(x, N2) – ... ;

sort(L) – if #L < 2
then result æ L
else result æ insert(first_of(L), sort(rest_of(L)))
fi;

N æ sort(L)

Finally, to complete this version of sort, we need an implementation scheme for
insert. First let's change the names in the specification of insert. Obviously, this
makes no technical difference, but may make it easier to see what is happening,
i.e., insert x into L giving N:

insert: Ù * — *
pre-insert(”x,L’) – ascending(L)
post-insert(”x,L’,N) – ascending(N) ¯

 bag_of(N) = bag_of(L) È ÊxÁ

It would seem reasonable to require that insert satisfies a set of rules such as those
given below. Check that these make sense 3 and that they are consistent with the
specification given above.

insert(x,”’) ¢ ”x’

(x ≤ y) insert(x,”y’) ¢ ”x,y’
(x > y) insert(x,”y’) ¢ ”y,x’

and, with L1,L2: +,

(x ≤ first_of(L2)) insert(x,L1»L2) ¢ insert(x,L1)»L2

(x > first_of(L2)) insert(x,L1»L2) ¢ L1»insert(x,L2)

3 Notice also that these rules guarantee convergence of insert(x, L) using #L as the measure.

386 Constructing Correct Software

But here the breakpoint between L1 and L2 is arbitrary, and hence the rules cannot

be used directly in an implementation design. An alternative set of rules is

insert(x,”’) ¢ ”x’

(x ≤ y) insert(x,”y’) ¢ ”x,y’
(x > y) insert(x,”y’) ¢ ”y,x’

and, with L2: +,

(x ≤ y) insert(x,”y’»L2) ¢ ”x’»”y’»L2

(x > y) insert(x,”y’»L2) ¢ ”y’»insert(x,L2)

And these reduce to

insert(x,”’) ¢ ”x’

and, with L2: *,

(x ≤ y) insert(x,”y’»L2) ¢ ”x’»”y’»L2

(x > y) insert(x,”y’»L2) ¢ ”y’»insert(x,L2)

So
insert(x,L) ¢ if L = ”’ then ”x’

else if x ≤ first_of(L)
then ”x’»L
else ”first_of(L)’»insert(x, rest_of(L))
fi

fi

¢ making the two “then” clauses the same to allow their combination

insert(x,L) ¢ if L = ”’ then ”x’»L
else if x ≤ first_of(L)

then ”x’»L
else ”first_of(L)’»insert(x, rest_of(L))
fi

fi

¢ combine the two “if” constructs

insert(x,L) ¢ if L = ”’ Ò x ≤ first_of(L)
then ”x’»L
else ”first_of(L)’»insert(x, rest_of(L))
fi

Sorting Revisited 387

Applying the associative recursion removal rule, we get

insert(x,L)– (var N0: *,L0: *;

N0 æ ”’;

L0 æ L;

while ⁄(L0 = ”’ Ò x ≤ first_of(L0))

do N0 æ N0»”first_of(L0)’;

 L0 æ rest_of(L0)

od;
 result æ N0»”x’»L0

);
sort(L) – if #L < 2then result æ L

 else result æ insert(first_of(L), sort(rest_of(L)))
fi;

N æ sort(L)

Note that by virtue of the recursion at the top level and the use of first_of and
rest_of, the insertion here effectively works in reverse, taking the last element in
the list, placing it in the output, and progressively inserting the elements into that
list by working backwards through the input. Obviously, the synthesis can be
done just as well using the functions last_of and front_of, where, when #L ≥ 1,

front_of(L) »”last_of(L)’¢ L

[And notice that in these derivations we have purposely avoided corrupting the
input list.]

We now have what is generally know as an Insertion Sort.

Other list decompositions based on size can be used. These include

split_7: + — +Ù +

pre-split_7(L) – #L ≥ 2
post-split_7(L,”L1,L2’) – L = L1»L2 ¯ #L1 = #L ÷ 2

which breaks the list as equally as possible. or

split_8: + — +Ù +

pre-split_8(L) – #L ≥ n
post-split_8(L,”L1,L2’) – L = L1»L2 ¯ #L1 = n

for some specific value of n. Both these variants are better suited to multi-
processor systems when a division of effort is desired.

388 Constructing Correct Software

Alternatively, the initial problem domain can be split using the predicate
ascending(L).

if ascending(L) then N = L
else split L at a point where it is not ascending

fi

This requires that split becomes

split_9: * — +Ù +

pre-split_9(L) –�⁄ascending(L)
post-split_9(L,”L1,L2’) – (∃L3,L4: *,x,y:)

(L = L1»L2 ¯

L1 = L3»”x’�¯

L2 = ”y’»L4 ¯

x > y)

which could be used recursively to break the original list into ascending runs. No
sub-lists would be re-sorted unnecessarily, and this gives rise to a “minimal” merge
sort. Notice that we could also impose a non-parallel structure on the algorithm by
adding a further restriction (refinement) within split_9 by insisting that
“ascending(L1)” also holds.

split_10: * — +Ù +

pre-split_10(L) –�⁄ascending(L)
post-split_10(L,”L1,L2’) – (∃L3,L4: *,x,y:)

(L = L1»L2 ¯

L1 = L3»”x’�¯

L2 = ”y’»L4 ¯

x > y ¯
ascending(L1))

With this specification, it is quite straightforward to devise an appropriate set of
rules which a deterministic function should obey and hence extract a functional
program design.

Sorting Revisited 389

9.3 Partition Sorts

In contrast with merge sorts, where all work is essentially done in the combine
phase, in partition sorts, the computational effort is concentrated in the splitting
phase. Devising clever ways to achieve the required split is at the heart of
algorithms such as Quicksort and others.

As may be expected, this design can also be refined in several ways. The most
obvious is to require that one of L1 or L2 be a singleton list and therefore does not

need sorting. Making an appropriate refinement to the splitting phase, to split_3,
gives

split_11: * — *Ù *
pre-split_11(L) – #L ≥ 2
post-split_11(L,””x’,L2’) – (bag_of(L) = ÊxÁ È bag_of(L2)

¯ (¯(x ≤ y) | y: | y in L2)

This simplifies to
split_11: * — *Ù *
pre-split_11(L) – #L ≥ 2
post-split_11(L,””x’,L2’) – (bag_of(L) = ÊxÁ È bag_of(L2)

¯ x = (min y | y: | y in L))
where:

min(x,y) – if x ≤ y then x else y fi

A possible refinement of split_11 is simply to remove x from L , leaving the
remaining elements, in their original order, in L2. If x is in L (as it must be from

the specification of split_11) then there are lists L3 and L4, say, such that

L = L3»”x’»L4

We call the new version split_12. Note that split_11 ∞ split_12.

split_12: * — *Ù *
pre-split_12(L) – #L ≥ 2
post-split_12(L,””x’,L2’) – (∃L3,L4: *)

(L = L3»”x’»L4 ¯

 L2 = L3»L4 ¯

x = (min y | y: | y in L))

390 Constructing Correct Software

We can then further refine split_12 by insisting that the x extracted from L is the
first encountered, from left to right. This gives split_13

split_13: * — *Ù *
pre-split_13(L) – #L ≥ 2
post-split_13(L,””x’,L2’) – (∃L3,L4: *)

(L = L3»”x’»L4 ¯

L2 = L3»L4 ¯

⁄x in L3 ¯

x = (min y | y: | y in L))

The idea is to move a minimal element to the left end whilst leaving the remaining
elements in their original positions. Unfortunately, if, as is commonly done, the
lists are held in arrays, then we cannot simply leave gaps, and the elements would
have to be shuffled up 4. An alternative refinement of split_11 (but not of
split_13!) in which at most a single swap is required5 is as follows

split_14: * — *Ù *
pre-split_14(L) – #L ≥ 2
post-split_14(L,””x’,L2’) –

(x = (min y | y: | y in L) ¯
(L = ”x’»L2 Ò

 (∃y: ,L3,L4:Û*)(L = ”y’»L3»”x’»L4 ¯

 L2 = L3»”y’»L4 ¯

⁄x in L3)))

So, either we perform a single swap (which reduces the out-of-order measure,
M(”x’»L2) < M(L)), or x = y and the problem reduces to sorting L2 and

#L2 < #L.

Before putting split_14 into the general structure for a partition sort, we need to
calculate an implementation of split_14. We could start in the usual way by
considering the possible forms of the input list L, but it will soon become clear
that the place where L is divided by x, (i.e., L3 and L4) is important. It is

therefore convenient to reformulate split_14 so as to combine the two alternatives
(currently combined using ‘Ò’) into a conditional form. This reflects the necessary
ordering of the sub-components, namely, identify the minimum value, locate where
it is, and then split the list accordingly.
4 And even using lists, this is not particularly easy.
5 If our lists consisted of ‘large’ records instead of simply integers (effectively the keys of such
records), then swapping list elements might be expensive and this would be a significant consideration.

Sorting Revisited 391

We derive a design for split_14 in two different ways, the first of which is
intentionally gradual.

Hence
split_14(L) ¢ if L3 = ”’

then ””x’,L4’

else ””x’, rest_of(L3)»”first_of(L3)’»L4’

fi
where: ”L3,L4’ = partition_1(L,x)

where: x = (min y | y: | y in L)
and

partition_1: *Ù — *Ù *
pre-partition_1(”L,x’) – x in L
post-partition_1(”L,x’,”L3,L4’) – L = L3»”x’»L4 ¯

 ⁄x in L3)

Viewed computationally, the list L has to be visited twice, once to determine x and
then again essentially to find L3. This can be avoided by having the partitioning

function find the minimum as well as using it in the decomposition of L.

Hence
split_14(L) ¢ if L3 = ”’

then ””x’,L4’

else ””x’, rest_of(L3)»”first_of(L3)’»L4’

fi
where: ”L3,x,L4’ = partition_2(L)

and
partition_2: * — *Ù Ù *
pre-partition_2(L) – ⁄L = ”’
post-partition_2(L,”L3,x,L4’) – (x = (min y | y: | y in L) ¯

L = L3»”x’»L4 ¯

⁄x in L3)

392 Constructing Correct Software

Now we set about computing a recursive design for partition_2. First note some
simple rules which hold for an implementation of partition_2.

(a:) partition_2(”a’) ¢ ””’ ,a,”’’ — see6

(P,Q: +)
(p≤q) partition_2(P»Q) ¢ ”P1,p,P2»Q ’ — ditto

(q<p) partition_2(P»Q) ¢”P»Q1,q,Q2 ’

 where: partition_2(P) =”P1,p,P2’¯ partition_2(Q) = ”Q1,q,Q2’

Since the ‘input’ in each of these cases is a non-empty lists (and hence the pre-
partition condition holds), these rules are justified by substitution into post-
partition_2.

post-partition_2(”a’,””’ ,a ,”’’)
¢

(a = (min y | y: | y in ”a’) ¯
”a’ = ”’»”a’»”’ ¯
⁄a in ”’)

¢ — (min y | y: | y in ”a’) ¢ minÊaÁ ¢ a
— a in ”’ ¢ False

True

and, if p≤ q then, with P,Q: +,

post-partition_2(P»Q,”P1, p,P2»Q ’)

¢
(p = (min y | y: | y in P»Q) ¯

P»Q = P1»”p’»P2»Q ¯

⁄p in P1)

where: partition_2(P) = ”P1,p,P2’

 ¯ partition_2(Q) = ”Q1,q,Q2’

¯ (min y | y: | y in P»Q) =
min((min y | y: | y in P), (min y | y: | y in Q))

¢ post-partition_2(P,”P1,p,P2’) fi ⁄p in P1

(p = min(p,q) ¯
P»Q = P»Q)

¢
True

6 These rules are parameterised by a (of type) and by P and Q (of type +, the non-empty
elements of *), respectively.

Sorting Revisited 393

So, using these rules, we get

partition_2(L) ¢ if #L =1 then ””’ , first_of(L) , ”’’
else if first_of(L) ≤ q

then ””’, first_of(L) ,Q’
else””first_of(L)’»Q1,q,Q2’

fi
fi

where: ”Q1,q,Q2’ = partition_2(rest_of(L))

We need now to introduce an ‘improvement’ function to calculate partition_2.
Explicitly, in improve_2(R1,r,R2, Q) we want to improve R1,r,R2; Q is the

remaining data. The type of improve_2 is

*Ù Ù *Ù * — *Ù Ù *

Basic requirements for such a function include

improve_2(R1,r,R2, ”’) ¢ partition_2(T) for some T: +

so improve_2(”’,r,”’, ”’) ¢ ””’,r,”’’

and, if Q ≠ ”’,
improve_2(R1,r,R2, Q) ¢ partition_2(T»Q)

where: improve_2(R1,r,R2, ”’) = partition_2(T)

The triple ”R1,r,R2’ represents ‘the answer so far’, before we move on to consider

Q, which is reduced until it becomes empty.

i.e., improve_2(R1,r,R2,Q) ¢ if r ≤ q then ”R1,r,R2»Q’

else ”R1»”r’»R2»Q1,q,Q2’

fi
where: partition_2(Q) = ”Q1,q,Q2’

It therefore follows that

partition_2(L) ¢ improve_2(”’ , first_of(L) , ”’, rest_of(L)�)

By assumption L≠”’ so we can start with the triple ””’ , first_of(L) , ”’’ and
improve it by using the remaining elements, i.e., rest_of(L), and, when there are no
more elements left, we have

improve_2(R1,r,R2,”’) ¢ ”R1,r,R2’

394 Constructing Correct Software

These are used for starting and ending the calculation. In the simplest case, they
collapse to give

partition_2(”a’) ¢ improve_2(”’ , a, ”’, ”’)

and for intermediate stages we need:

improve_2(R1,r,R2,P»Q) ¢ if r≤p

then improve_2(R1,r,R2»P,Q)

else improve_2(R1»”r’»R2»P1,p,P2,Q)

fi
where: partition_2(P) = ”P1,p,P2’

These can be verified by substitution.

Putting them to use, we get:

improve_2(R1,r,R2,Q)

 ¢
if Q = ”’ then ”R1,r,R2’

else if r ≤ first_of(Q)
then improve_2(R1,r,R2»”first_of(Q)’, rest_of(Q))

else improve_2(R1»”r’»R2,first_of(Q),”’, rest_of(Q))

fi
fi

 ¢
if Q = ”’ then ”R1,r,R2’

else improve_2(X1,x,X2, rest_of(Q))

fi

where: ”X1,x,X2’ = if r ≤ first_of(Q)

then ”R1,r,R2»”first_of(Q)’’

else” R1»”r’»R2,first_of(Q),”’’

fi

Sorting Revisited 395

This is tail-recursive and can be replaced by an iterative procedural scheme that can
be used directly in partition_2 and subsequently in split_14, which is a refinement
of split_3. Making the appropriate substitutions and removing the trivial recursive
call within sort (since it only sorts a singleton list), we get

improve_2(R1,r,R2,Q) –

 (var X1: *,x: ,X2,Y: *;

”X1,x,X2,Y’ æ ”R1,r,R2,Q’;

while ⁄(Y = ”’)
do ”X1,x,X2,Y’ æ

if x ≤ first_of(Y)
then ”X1,x,X2»”first_of(Y)’, rest_of(Y)’

else” X1»”x’»X2,first_of(Y),”’, rest_of(Y)’

fi
od;
result æ ”X1,x,X2’

);
partition_2(L) – improve_2(”’ , first_of(L) , ”’, rest_of(L)�)
split_14(L) – (var L3: *,x: ,L4: *;

”L3,x,L4’ æ partition_2(L);

result æ if L3 = ”’

then ””x’,L4’

else ””x’, rest_of(L3)»”first_of(L3)’»L4’

fi);
sort(L) – if #L < 2

then result æ L

else (var L2: +,x: ;

””x’,L2’ æ split_14(L);

result æ ”x’»sort(L2))

fi;
N æ sort(L)

[An alternative and more direct ‘derivation’ of the same implementation design is
via a eureka step. As is always the case with such tactics, the explanation of the
underlying inspiration is not always easy — except in the mind of its creator.
Since the idea behind this eureka step is the same as the calculation just presented,
we shall not even try to give another explanation. We merely quote a set of
appropriate rules in terms of an intermediate function F.

396 Constructing Correct Software

Lowest finds the position of the (first instance of the) lowest value within a non-
empty list of integers without actually performing any exchanges. All the types
can be deduced from the list and integer operators used, so (for simplicity of
presentation) we omit any explicit indication.

Lowest(L) ¢ F(”’, x, ”’, N)
where: L = ”x’»N

(N =”’) F(A, , B, N) ¢ ”A, , B’
(≤ y) F(A, , B, N) ¢ F(A, , B»”y’, M)
(>y) F(A, , B, N) ¢ F(A»” ’»B, y, ”’, M)

where: N = ”y’»M

Here the invariant of F(A, , B, N) is

L = A»” ’»B»N
¯ = (min y | y: | y in A»” ’»B)
¯ ⁄(in A)

and #N reduces to zero, thus guaranteeing termination.

Immediately this yields the iterative implementation scheme for Lowest:

begin var A, B, N: *, : ;
”A, , B, N’ æ ””’ , first_of(L), ”’, rest_of(L)’;
while N ≠”’
do if ≤ first_of(N)

then ”A, ,B,N’ æ ”A, ,B»”first_of(N)’, rest_of(N)’
else ”A, ,B,N’æ”A»” ’»B, first_of(N),”’, rest_of(N)’
fi

od;
result æ ”A, ,B’

end

This then simplifies to

begin var A, B, N: *, : ;
”A, ,B,N’ æ ””’ , first_of(L),”’, rest_of(L)’;
while N ≠”’
do if ≤ first_of(N)

then B æ B»”first_of(N)’
else ”A, ,B’æ”A»” ’»B, first_of(N),”’’
fi; N æ rest_of(N)

od;
result æ ”A, ,B’

end

Sorting Revisited 397

Therefore, we have

Lowest(L) – begin var A,B,N: *, : ;
”A, ,B,N’ æ ””’ , first_of(L), ”’, rest_of(L)’;

while N ≠”’
do if ≤ first_of(N)

then B æ B»”first_of(N)’
else ”A, ,B’æ”A»” ’»B, first_of(N),”’’
fi; N æ rest_of(N)

od;
result æ ”A, ,B’

end;
sort(L) – if #L < 2

then result æ L
else (var L1,L2: *,x: ;

”L1,x,L2’ æ Lowest(L);

result æ ”x’»sort(rest_of(L1)»”first_of(L1)’»L2))

fi;
N æ sort(L)

which, apart from changes in internal ‘variable’ names7 and some factorization, is
the same as the scheme already obtained.]

[Note also that if there is little expense associated with swapping 8, then we need
not preserve the order of the list segment that does not contain the (first
encountered) minimal element. So, working from the specification of split_11, we
can use the simpler set of rules

select(L) ¢ F(x, ”’, N)
where: L = ”x’»N

(N =”’) F(, A, N) ¢” , A’
(≤ y) F(, A, N) ¢ F(, A»”y’, M)
(>y) F(, A, N) ¢ F(y, A»” ’, M)

where: N = ”y’»M

Here the invariant now uses bags but is essentially the same, and again convergence
is controlled by the size of N.
7 We have made no attempt to unify the sets of names used within design segments and strongly
advise the use of whatever names are deemed appropriate. Of course, a certain software house may
have guidelines for such matters, but it often helps to clarify local concerns to use (very) different
names within the body of a function declaration and not those used in the surrounding ‘calling’
context.
8 Or the program uses ‘pseudo’ pointers that are swapped, rather than the actual data values.

398 Constructing Correct Software

Routinely we can extract the following implementation scheme:

select(L) – begin var A,N: *, : ;
” ,A,N’ æ ” first_of(L), ”’, rest_of(L)’;

while N ≠”’
do if ≤ first_of(N)

then A æ A»”first_of(N)’
else ” ,A’æ” first_of(N),A»” ’’
fi; N æ rest_of(N)

od;
result æ ” , A’

end;
sort(L) – if #L < 2

then result æ L

else (var L2: *,x: ;

”x,L2’ æ select(L);

result æ ”x’»sort(L2))

fi;
N æ sort(L)

We shall now break off this digression and return to our main thread of
development.]

Sorting Revisited 399

Combining the functions schemes improve_2, partition_2, split_14 and sort, we
have, after substitution and renaming

sort(L) – if #L < 2
then result æ L

else (var L2: +,x: ,X1: *,X2,Y: *;

”X1,x,X2,Y’ æ ””’ , first_of(L) ,”’, rest_of(L)�’;

while ⁄(Y = ”’)
do ”X1, x, X2, Y’ æ

if x ≤ first_of(Y)
then ”X1,x,X2»”first_of(Y)’, rest_of(Y)’

else ”X1»”x’»X2, first_of(Y),”’, rest_of(Y)’

fi
od;

L2 æ if X1 = ”’ then X2

else rest_of(X1)»”first_of(X1)’»X2

fi;
result æ ”x’»sort(L2))

fi;
N æ sort(L)

Now, without all the detailed explanation, we superimpose the lists onto an array
A. The basic idea is that A should hold the composite list

X1»”x’»X2»Y

(This composite list is of fixed length, so storing in an array is a reasonable idea.)

Recall the convention that A[i..j] is empty if i> j. So, initially, if #L = n

X1 is held in A[1..0]

x A[1]
X2 A[2..1]

Y A[2..n]

More generally, representing a segment of L with subscripts running from a to b,

X1 is held in A[a..I–1]

x A[I]
X2 A[I+1..J–1]

Y A[J..b]

400 Constructing Correct Software

We can then translate (as in Chapter 8)9 the list scheme above to give

sort(a,b)– if b≤a
then skip
else (var I,J: ;

Iæa; Jæa+1;
while J≤b

do if A[I] > A[J] then IæJ fi;
JæJ+1
od;

if I≠a then ”A[I],A[a]’æ”A[a],A[I]’ fi;
sort(a+1,b))

fi;
A[1..n] æ L;
sort(1,n);
N æ A[1..n]

and then the tail recursion can be replaced by an iteration to yield the familiar
algorithm

sort(a,b)– (var a1: ;
a1æ a;
while a1<b
do (var I,J: ;

Iæa1; Jæa1+1;
while J≤b

do if A[I] > A[J] then IæJ fi;
JæJ+1
od;

if I≠a1 then ”A[I],A[a1]’æ”A[a1],A[I]’ fi;
a1æ a1+1)

od)

So we select (the first instance of) the smallest integer in L and use it to make a
list; L2 is the list of remaining elements and is processed in the same way. This is

called a selection sort.

An alternative development, which is not strictly a refinement of the traditional
partition split but illustrates how the characteristics of individual problems can be
used to tailor general techniques.
9 Notice that not only is there a type change here, but the new version of sort is a procedure, not a
function. Also, a suitable declaration of the array needs to be included.

Sorting Revisited 401

Recall
split_3: * — *Ù *
pre-split_3(L) – #L ≥ 2
post-split_3(L,”L1,L2’) – (∃x:)

(bag_of(L) = bag_of(L1) È bag_of(L2) ¯

(¯(y ≤ x) | y: | y in L1) ¯

(¯(x ≤ y) | y: | y in L2) ¯

#L1 ≥ 1 ¯ #L2 ≥ 1)

in which the value of x is effectively lost once we have passed this phase. Why
not retain it? Remove it from the intermediate processing and place it — in the
right place — in the combine phase. Of course, this means that we can no longer
demand that #L1 ≥ 1 ¯ #L2 ≥ 1, but that does not matter since the ‘removal’ of x 10

will ensure that #L1 < #L and #L2 < #L.

We therefore have

split_15: * — *Ù Ù *
pre-split_15(L) – #L ≥ 2
post-split_15(L,”L1,x,L2’) –

(bag_of(L) = bag_of(L1) È ÊxÁ È bag_of(L2) ¯

(¯(y ≤ x) | y: | y in L1) ¯ (¯(x ≤ y) | y: | y in L2))

This is not a refinement of split_3; it can’t be because the signatures are different.

We then get the overall design for the sort:

if #L < 2
then N = L

else (∃L1,L2,N1,N2: *,x:)

(”L1,x,L2’ = split_15(L) ¯

N1 = sort(L1) ¯ N2 = sort(L2)

¯ N = N1»”x’»N2)

fi

(Notice that restricting L1 to ”’ would give us a reformulation of a selection sort,

particularly if we were to add the extra constraint that ⁄(x in L1).)

1 0 The pivot of the (partition) sort.

402 Constructing Correct Software

Allowing empty values for L1 and L2 and targeting the implementation at array

usage — trying to avoid deletions and insertions in favour of swaps — leads us in
the direction of Quicksort. But beware, the literature contains many different
algorithms named Quicksort. We are not quite there yet. Before giving a
derivation of (one version of) Quicksort, we consider some more simplistic
implementation schemes.

First we make the remark that, since we know nothing special about the lists that
we are being asked to sort, and hence the ordering of the input list is ‘random’, any
choice of the value x (now known to be in L) is as good as any other. Therefore,
without any loss of generality, we can use the first element in L.

A possible starting point for an implementation of split_15 is the following set of
rules involving the subsidiary function F:

split_15(L: +) ¢ F(x,”’,”’,N)
where: L = ”x’»N

(N =”’) F(x,A,B,N) ¢ ”A, x, B’
(y <x) F(x,A,B,”y’»M) ¢ F(x,”y’»A,B,M)
(x ≤y) F(x,A,B,”y’»M) ¢ F(x,A,”y’»B,M)

Here the invariant for F(x,A,B,N) is

(bag_of(L) = bag_of(A) È ÊxÁ È bag_of(B) È bag_of(N) ¯
(¯(y < x) | y: | y in A) ¯ (¯(x ≤ y) | y: | y in B))

and again #N reduces to zero, thus guaranteeing termination.

As an alternative, we could re-order the parameters and use

split_15(L: +) ¢ G(x,”’,N,”’)
where: L = ”x’»N

(N =”’) G(x,A,N,B) ¢ ”A, x, B’
(y <x) G(x,A,”y’»M,B) ¢ G(x,A»”y’,M,B)
(x ≤y) G(x,A,”y’»M,B) ¢ G(x,A,M,”y’»B)

There is no mathematical difference between these two rule sets, but notice the
convenient ‘sliding’ of the value y between the third and second parameters in the
(y < x) rule, particularly if they were held in consecutive segments in an array.
However, the same could not be said of the transfer of y in the (x ≤ y) rule. But we
can make some concession to this situation with yet another set of rules.

Sorting Revisited 403

Suppose

split_15(L: +) ¢ H(x,”’,N,”’)
where: L = ”x’»N

(N=”’) H(x,A,N,B) ¢ ”A, x, B’
(y < x)11 H(x,A,”y’»M,B) ¢ H(x,A»”y’,M,B)
(x ≤ y, x ≤ z) H(x,A,”y’»M»”z’,B) ¢ H(x,A,”y’»M,”z’»B)

So now we ‘slipped z from the third parameter to the forth, but what about the
‘other’ case, when x ≤ y, and x >z? Clearly what has to happen is that y has to go
to B and z to A. This can be done with a single exchange, and we get

(x ≤ y,x > z) H(x,A,”y’»M»”z’,B) ¢ H(x,A»”z’,M,”y’»B)

These rules provide the essence of Quicksort12, all that is needed to allow the output
triple to fit directly into the calling scenario is to replace the N = ”’ rule by two
slightly more specialised rules, namely

(N =”’,A =”’) H(x,A,N,B) ¢ ”A, x, B’

and

(N =”’,A ≠”’) H(x,A,N,B) ¢ ””y’»D,x,B’ where: A = D»”y’

The reason for this final manipulation is to ensure that x is in the appropriate
position in the implied list derived from

”x’»D»”y’

with the least amount of swapping. Remember that all the elements in D»”y’
are less than x but we know nothing about the order within that list; hence we do
as little work as possible and perform a single exchange to give

”y’»D»”x’

Of course, if x is the minimal value, then there is nothing to be done.

1 1 The conditions used here force a particular order of application. Other orders are possible, as
indeed is ambiguity, but we want the rules to guarantee deterministic evaluation.
1 2 In the original version Hoare started off with a random selection of the x element, but we have
argued that this is not necessary. He also allowed for multiple x values to be returned in the A
segment and within a longer ‘all x’ segment, as well as in the B segment.

404 Constructing Correct Software

From these rules, we have

split_15(L: +) –

begin var x, ,A,N,B: *;
”x,A,N,B’ æ ” first_of(L),”’, rest_of(L),”’’;
while N ≠”’
 do if first_of(N) < x

then ”x,A,N,B’ æ ”x,A»”first_of(N)’, rest_of(N),B’
else_if x ≤ last_of(N)
then ”x,A,N,B’ æ ”x,A, front_of(N),”last_of(N)’»B’
else ” x,A,N,B’
 æ ”x,A»”last_of(N)’, front_of(rest_of(N)),”first_of(N)’»B’
fi

 od;
result æ if A = ”’

then ”A, x, B’
else ””last_of(A)’»front_of(A),x,B’
fi

end;
sort(L) – (result æ if #L < 2

then N = L

else (var L1,L2,N1,N2: *,x: ;

”L1,x,L2’ æ split_15(L);

(N1 æ sort(L1) « N2 æ sort(L2));

N1»”x’»N2)

fi;)

Before the last transformation, we simplify split_15 slightly and rename A and B as
C and D. This gives

split_15(L: +) –

begin var x, ,C,N,D: *;
”x,C,N,D’ æ ” first_of(L),”’, rest_of(L),”’’;
while N ≠”’
 do if first_of(N) < x

then ”C,N’ æ ”C»”first_of(N)’, rest_of(N)’
else_if x ≤ last_of(N)
then ”N,D’ æ ” front_of(N),”last_of(N)’»D’
else ”C,N,D’
 æ ”C»”last_of(N)’, front_of(rest_of(N)),”first_of(N)’»D’
fi

 od;

Sorting Revisited 405

result æ if C = ”’
then ”C,x,D’
else ””last_of(C)’»front_of(C),x,D’
fi

end

Finally, we map the list L onto the array A[1 .. #L], whence the functions become
procedures and we have

split_15(a,b:) –
begin var x, , I,J: ;

“ in the main computation, we hold N in A[I .. J],
C in A[a+1 .. I -1], D in A[J+1 .. b] ”

x æ A[a]; ” I,J’ æ ” a+1,b’;
while I ≤ J
 do if A[I] < x

then I æ I+1
else_if x ≤ A[J]
then J æ J–1
else ”A[I] ,A[J]’ æ ”A[J] ,A[I]’;
 I æ I+1; J æ J–1
fi

 od; “ we simply deliver the index of the pivot in n ”
if I–1 < a+1

then n æ a
else ”A[a] ,A[I–1]’ æ ”A[I–1] ,A[a]’;

n æ I–1
fi
end;
sort(a,b) –(if b ≤ a

then skip
else (var n:)

(split_15(a,b);
(sort(a,n–1) « sort(n +1,b)))

fi);
A[1..n] æ L;
sort(1,n);
N æ A[1..n]

Finally, we mention a variant of Quicksort (of which there are many, some in
which the pivot is changed — for a ‘better’ one — as the algorithm proceeds).
Here the pivot ‘bounces’ up and down within the list. Again we use the first
element as the pivot but at the end it is already in the required position, so the last

406 Constructing Correct Software

part of the previous scheme can be omitted. [We are not advocating this as an
improvement. We have said nothing about the relative complexity and efficiency
of the various computation schemes — such considerations fall outside the scope of
this book.]

We only give sets of evaluation rules (their subsequent to give program designs is
quite straightforward) and include them merely as a further example of this form of
algorithm development.

Here we use two functions K1 and K2, which have slightly different signatures.

split_15(L: +) ¢ K1(”’,x,N,”’)
where: L = ”x’»N

(N=”’) K1(A,x,N,B) ¢ ”A, x, B’
(x ≤ y) K1(A,x,Q»”y’,B) ¢ K1(A,x,Q,”y’»B)
(x >y) K1(A,x,Q»”y’,B) ¢ K2(A»”y’,Q,x,B)

(N=”’) K2(A,N,x,B) ¢ ”A, x, B’
(z ≤ x) K2(A,”z’»Q,x,B) ¢ K2(A»”z’,Q,x,B)
(z >x) K2(A,”z’»Q,x,B) ¢ K1(A,x,Q,”z’»B)

With these rules, the usual input list gives rise to the following progression,
presented as a ‘concatenation’ of the parameters in order with the pivot underlined:

A | x | N | B

 | 6 | 7 3 5 8 3 |

 3 | 7 3 5 8 | 6 |

 3 | 6 | 3 5 8 | 7

 3 | 6 | 3 5 | 8 7

 3 5 | 3 | 6 | 8 7

 3 5 3 | 6 | 8 7

So, there we are; in two chapters we have presented quite a few ways of sorting a
list of integers (all developed from a single specification using formally justified
steps). Yet we have barely scratched the surface of the subject. Much more can be
done using other more complicated data structures. But that, as they say, is another
book.

Sorting Revisited 407

Chapter 10
Failures and Fixes

Transformations, by definition, are reversible. Working purely with
transformations is therefore essentially about re-arranging information without loss.
When reducing one design to another (and hence moving strictly closer to a
deterministic implementation), we intentionally discard certain possibilities. We
must take care not to remove anything essential.

Of course, there might be a more fundamental problem — we may have been asked
to do something impossible; the given problem may be insoluble. In the context
of program derivation, this means that we need to address the specification (Section
10.1).

Our formulation of (operational) refinement ensures that the pre-conditions are
preserved so that the same data is valid before and after a refinement step; but other
(hidden) refinements are embedded within some design tactics. These do not yield
errors as such but cause the tactic to fail. There is no general solution to this
problem; we must reach a productive compromise that loses an acceptable amount
of the original information. This is discussed in Section 10.2.

So, in this chapter, a failure refers to an attempt to solve an insoluble problem 1 or
an attempt to apply an inappropriate tactic (in which we lose some necessary
information).

Here, failure does not mean that there is an error, a failure, in the theory;
but, there is an error in the initial specification

or in the application of the theory.

Consequently, to rectify such a ‘failure’ requires that we reverse the design process
(even as far as the creation of the specification) and adopt a different tactic or, after
consultation with the ‘customer’, adjust the specification.

It is important to realise that these failures are detected within the transfinement
process. We cannot reach a situation where an implementation fails because of a
logical flaw in the derivation process.
1 Insoluble (unsolvable) in the sense that it cannot be solved for all legitimate inputs.

10.1 Inadequate Pre-Conditions

For technical (mathematical) reasons, it is impossible2 to determine whether an
arbitrary specification is satisfiable 3 (i.e., whether it does actually specify an
implementable, non-void4, function. Although we can usually justify that a data
value, x, satisfying the pre-condition, does admit the existence of an acceptable
result, y, so that ”x,y’ satisfies the post-condition, it is theoretically possible that
the search for such a y fails. When this happens, our manipulations simply fail to
yield an answer. This is very frustrating, but the failure prevents us from producing
an incorrect program design.

In practice, when this happens, it identifies a set of illegal input values, and this
leads to (negotiations with the customer and) revision of the specifications.

[Of course, since we are not insisting on weakest pre-conditions (WPs), the pre-
condition may be stronger than that dictated by the post-condition and hence any
pre-condition may, if agreeable with the ‘customer’, be strengthened providing that
it does not equate to ‘False’ and hence deny any possible implementation.]

Recall that the purpose of a pre-condition is to identify those input values for which
it is possible (and for which we wish) to compute the function. Suppose that we
do not know, or cannot easily find, the pre-condition. It is tempting to write.

pre-f(x) – (∃y:Y)(post-f(x,y)

That is, if x satisfies the pre-condition, then there is some value y — and there may
be more than one — such that ”x, y’ satisfies the post-condition.

But of course this would not be right; it is a circular argument.

Essentially there are two problems related to the specification

f:X — Y
pre-f(x) – True
post-f(x, y) – ...

(1) For a given x, is there a value y such that post-f(x, y) = True?
(2) If one or more such values exist, find one of them.

2 This is provably impossible. It is not simply that nobody has managed to solve this (general)
problem yet; they never can.
3 Of course, for many specific problems (in fact, the vast majority of ‘real’ specifications that you
will encounter), it is possible.
4 A function other than the empty function, the function with an empty domain.

410 Constructing Correct Software

Without a proper pre-condition, we cannot confidently simply embark on the
program synthesis process and try to deduce an answer since there might not be one.
This is rather like slipping from the type to , trying to evaluate some decision
procedure and getting the answer “unknown”.

In trying to cope5 with the specification above, let us take the pre-condition as a
working assumption (an informed ‘guess’) and consider the modified specification.

f ':X — Y Ù
pre-f '(x) – True
post-f '(x, ”y, b’) – b = (∃y:Y)(post-f(x,y))

 if b then post-f(x,y)
else y = any_value:Y fi

This is not the same problem; f ' is not the same function as f, although it is
closely related. Assuming that we can apply some useful techniques, such as
splitting or reduction, then the synthesis for a design for f ' can proceed as normal.

If it transpires that that the resultant implementation design always delivers True for
the Boolean component, then the pre-condition for f was adequate, and if, as here,
the pre-condition was identically True, the calculation is said to be robust. (i.e.,
it will deliver a valid result for any input of type X). In general, this will not be
the case, and we have to compute f ' and use a ‘rig’ of the form

” y, b ’ æ f '(x);
if b then y

else “calculation of f(x) failed” fi

This is the best we can do.

10.2 Failures in Structural Splitting

Of the different ‘divide and conquer’ tactics, structural splitting is perhaps the one
most likely to ‘fail’. We cannot always simply apply the structural splitting
strategy and expect that a valid, correct, program design will just ‘fall out’. There
are many different reasons why this might be so; sometimes the structure of the
problem — and the structure of the input — might simply not be susceptible to
this approach. However, it will often be the case that the method almost works,
and it is to these situations that we wish to alert the reader. Recall that in structural
splitting we break up the data, perform calculations on the parts, and then try to
deduce the final answer by combining the answers to the sub-calculations. Since

5 The construction outlined above can be applied to situations where the pre-condition is not assumed
to be identically True, but we shall make this simplification for the sake of presentation.

Failures and Fixes 411

deduce the final answer by combining the answers to the sub-calculations. Since
the splitting phase can be reversed (so as to retrieve the original input values), there
would seem to be no possibility that any information could be lost. Information
isn’t lost during splitting, but it can be lost within the following sub-calculations.
A way to circumvent this problem is to retain more information in the ‘answer’
— thus solving a different problem — and extract the desired result at the very end.
We now discuss this situation by means of one extended example.

10.2.1 Loss of Vital Information

Example 10.1 To illustrate the problem, recall the all_same specification from
Example 3.9:

all_same: * —
pre-all_same(L) – True
post-all_same(L,b) – b› (∃x:)(∀y:)(y in L fi x = y)

Using straightforward structural splitting, we would proceed as follows. With input
” 2, 3’ we would get ” 2’ and ” 3’, each of which yields the intermediate answer
‘True’. We must then combine these values to give the final result (for
all_same(”2, 3’)), which we want to be ‘False’. But working with input ”2, 2’,
we get the same intermediate values and now require the overall result to be ‘True’.
Clearly, there is no combine function that is consistent with

” True, True’ Ÿ True
and

” True, True’ Ÿ False

This conflict arises because all_same delivers a Boolean result; it tells us whether or
not all the elements of a singleton list are the same (and of course they are since
there is only one), but it does not tell us what that element is. We have thrown
away information which we might have retained, but the specification did not allow
us to retain it.

In this problem (and in general), we can solve the problem — and hence perform
the required calculation using the same splitting technique — by solving a slightly
‘wider’ problem and then using its result to solve all_same.

To focus attention on the essential ‘loss of information’, we modify all_same so as

to have the signature + — (i.e., we deny the empty list as valid input; it is
easily handled on its own). We shall call this new variant NAS, new_all_same.

412 Constructing Correct Software

The promised ‘internal’ function has the specification

g: + — (Ë {Undefined})
pre-g(L) – True
post-g(L,”b, z’) –(∃x:)(if (∀y:)(y in L fi x = y)

then ”b, z’ = ”True, x’
else ”b, z’ = ”False, Undefined’ fi)

Then
NAS(L) ¢ b where: (∃z: Ë {Undefined})(g(L) = ”b, z’)

We do not need the z part of the answer in the final result, but we do need it in the
intermediate steps.

Now, with input ”2, 3’ we have:

g(”2, 3’) ¢ g(”2’»”3’)

¢ combine(g(”2’) , g(”3’))

¢ combine(”True, 2’ , ”True, 3’)

Here combine has more input (more information) and can be defined by

combine: (”b1,z1’, ”b2,z2’) Ÿ

if (b1 ¯ b2) (z1 =6 z2) then ” True, z1’

 else ” False, Undefined’ fi

So, we obtain

g(” 2, 3’) ¢ combine(” True, 2’ , ” True, 3’)
¢ if (True ¯ True) (2 = 3) then ”True, 2’

else ”False, Undefined’ fi
¢ if True (2 = 3) then ”True, 2’

else ”False, Undefined’ fi
¢ ”False, Undefined’

whereas
g(”2, 2’) ¢ combine(”True, 2’ , ”True, 2’)

¢ if True (2 = 2) then ”True, 2’
else ”False, Undefined’ fi

¢ ”True, 2’
❑

6 Remember that Undefined = Undefined ¢ Undefined, but this situation should never arise.

Failures and Fixes 413

We have suggested one way to handle the all_same failure, but can we find a general
fix for this and similar failures? The answer is that if the problem is amenable to
structural splitting, then this approach will provide a framework for its calculation.
We describe a general construction, which saves all the available information, so it
must work. (By keeping all the available information, the technique succeeds but
we apparently gain nothing.) However, we do not usually need all this information
and we can therefore — once we know that the technique works — remove any
information that is not used. Here goes.

Suppose that we have a specification of a function with signature

f : X+ — Y

[Again, if we were asked to deal with f : X* — Y, then we would need to handle
f(”’) as a special case.]

Now construct

p+ where p:X — X+ Ù Y defined by p(x) – ””x’, f(”x’)’

q+ where q :(X+ Ù Y)2 — (X+ Ù Y) (see7)

 defined by q(””L1,y1’,”L2,y2’’) – ”L1»L2, amalgamate(y1, y2, L1, L2)’

and

r where r :X+ Ù Y — Y is defined by r(”L,y’) – y.

To complete this construction, we need a definition of the function

amalgamate:Y Ù Y Ù X+ Ù X+ — Y.

Notice that using the definition

amalgamate(y1, y2, L1, L2) – f(L1»L2)

we get

r ° q+ ° p+(L) ¢ f(L) for any non-empty L, so this combination of

functions ‘works’ in the sense that it gives the required answer.

However, in order to benefit from this rather complicated way of going about
things, we need a definition of amalgamate which utilises y1 and y2 as much as

possible and L1 and L2 as little as possible. To be of practical use, the calculation

at the heart of amalgamate must be ‘simpler’ than f ; it must be able to utilise the
values y1 and y2 to some extent. [If we don’t need to use L1 and L2 at all, then a

straightforward structural split would have worked.]

7 p+ and q+ are list functions induced from p and q — see Sections 5.3.2 and 5.3.3.

414 Constructing Correct Software

Example 10.2 We won’t attempt a general discussion of the relationship between
amalgamate and f (it is far too difficult) but we walk through this construction as it
can be applied to all_same.

Recall the specification

all_same: * —
pre-all_same(L) – True
post-all_same(L,b) – b = (∃x:)(∀y:)(y in L fi x = y)

First notice that all_same(”’) ¢ True

— check this by formal substitution into the specification.

Secondly, for any n: ,

p(”n’) ¢ ” ”n’, True ’

This follows from all_same(”n’) ¢ True which again needs checking.

Now, by way of illustration, consider the input ”1, 2, 3’, then

p+(”1, 2, 3’) ¢ ” ” ”1’, True ’,
” ”2’, True ’,
” ”3’, True ’ ’

The function q8 now takes two items in this list and combines them. Typically we
have

(”L1 , b1’ , ”L2 , b2’)

If b1 and b2 are True (i.e. all_same(L1) and

all_same(L2) are True), then we need to refer back to L1 and L2 and check if the

common value in L1 is the same as the common value in L2. We can do this by

evaluating

first_of(L1) = first_of(L2).

Of course, if either b1 or b2 are False we need not consult the lists L1 and L2. This

suggests that we might be able to use the definition

amalgamate(b1, b2, L1, L2) – (b1 ¯ b2) (first-of(L1) = first_of(L2)).

8 Which must be associative in order that g+ be well-defined.

Failures and Fixes 415

[Again this has to be checked9 by showing that for L1,L2: +

post-all_same(L1»L2, (all_same(L1) ¯ all_same(L2))

 (first-of(L1) = first_of(L2))) ¢ True]

We can then use the standard implementation schemes for p* and q* (applied to p+

and q+) as given in Section 5.3.2. Superficially this solution is very similar to our
earlier version (Example 10.1) despite the more general approach. However, we can
now refine the data types involved to save only a single value from each list and use
the modified functions

p+ where p: — Ù is defined by p(x) –”x,True’

q+ where q :(Ù)2 — (Ù)2

is defined by q (””z1,b1’,”z2,b2’’) – ”z1, (b1 ¯ b2) (z1 = z2)’

and
r where r : Ù — is defined by r (”z,b’) – b.

And now we are back to the same solution. Of course, we need to ensure that we
have not lost too much of the information which was present in the original lists.

❑

Exercises
10.1 Try this construction with the following specification:

within_10
type: * —
pre-within_10(L) – True
post-within_10(L,b) – b› (∃x:) (∀n:) (n in L fi diff(n,x) ≤ 5)

where
diff(x,y) – if x ≥ y then x – y else y – x fi

Following the construction above, see if you can reduce the data so as to use

p: — () Ù
where p(x) – ” x –5 .. x+5 , True ’

and
g(” S1, b1 ’ , ” S2, b2 ’) – ” S1 fl S2 , (b1 ¯ b2) (S1 fl S2 ≠ Ø) ’.

❑
9 This calculation, together with the definition of p+ and induction on the length of lists, guarantees
the correctness of r ° q+ ° p+.

416 Constructing Correct Software

Chapter 11
Further Examples

Having spent many pages looking at various ways in which a single specification
can give rise to numerous designs and implementations, we now turn our attention
to two further examples which illustrate different aspects of algorithm design.
These are two important, if unfamiliar, problems that can be represented pictorially.
We could follow them through right down to the level of complete PDL
implementations; however, we shall stop at an earlier stage in the synthesis. Here
we are less concerned with details than the basic approach — the smaller sub-
calculations that are generated as we proceed can be tackled in the same way as
earlier examples.

Remember that essentially what we are doing is ‘inventing’ algorithms, and here we
shall describe the process by giving informal presentations of formal syntheses.
We shall be content with giving a detailed presentation of the problems —
sufficient to draw out the computationally significant aspects — construct a usable
specification, derive an initial high-level design, and then indicate how one might
proceed further.

Much of what is presented in this chapter might well be described as problem
manipulation (refinement) prior to software development and guided by the
availability of certain techniques and a desire to utilise more powerful functions
such as quantifications.

In Section 11.1, we consider a geometric problem, the so-called (2-dimensional)
convex hull problem. This does not employ any advanced mathematics but is
explained and discussed in terms of pictures. The example is included so as to
illustrate how the problem-solving ideas might be applied in non-software contexts
and then modelled in software. Indeed, the way in which the data for this problem
is represented presents an additional level of complication in formulating an
adequate specification.

Next, in Section 11.2, we look at topological sorting. This is a classical problem
which, despite its name, is based not on the order properties of integers (or any
other subset of real numbers) but on the implied orderings within the data set. It is

important in our context because the simplistic initial specification leads to the
possibility of failure (i.e., the problem may not be soluble for an arbitrary but
‘valid’ data set). The (signature of the) initial problem can be changed to overcome
this difficulty and provide a robust algorithm — one whose pre-condition is “True”
— and from which a solution to the initial problem can be extracted, if one exists.

To conclude this chapter, we include a discussion of some related ‘extremal’
problems. These are presented in a somewhat abstract context, but they relate to
many practical problems involving the extraction of (usually maximal) sequences of
related data elements within structures. In keeping with our wish not to move into
the realm of (specialized) data structure, we restrict our examples to integer lists and
arrays.

11.1 The 2-D Convex Hull

This problem involves real numbers. For our purposes, this is not important; the
structure of the algorithm (not the accuracy of the arithmetic) is the important
factor.

First we must explain exactly what the problem is. It is essentially a geometric
problem (see Figure 11.1), and whilst we do not expect many readers to be
particularly interested in geometry, it is a non-trivial yet easy-to-understand
problem, the overall structure of which mirrors many other, complex and not easily
visualised, problems which a software engineer might encounter.

B

A

C

D

E

Figure 11.1

Given a non-empty finite set of points in a “2-dimensional” plane (pairs of real
numbers), we have to find the smallest convex polygon (the hull) which includes
these points. A convex polygon is one that has no ‘hollows’; put another way, all

its internal angles are less than 180°.

418 Constructing Correct Software

The polygon in Figure 11.1 is convex, whereas the one in Figure 11.2 is concave
(the opposite of convex). The internal angle ZYX (measured clockwise from YZ to

YX) in Figure 11.2 is clearly bigger than 180°, the ‘straight’ angle.

Y

X Z

Figure 11.2

So given the set of points {a, b, c} as depicted in Figure 11.3, they can be enclosed
by a (convex) polygon as shown.

X

a

b

c

Figure 11.3

The convex polygon in Figure 11.3 is clearly not the smallest (either measured by
area or by the length of its perimeter) since we can chop off the corner X and get a
valid smaller polygon, provided that all the given points are still ‘inside’.

In fact, using domain knowledge, we can reformulate the specification (not change
it in the sense that it specifies something different). Doing this not only provides
us with a more manageable specification but also assists in the construction of a
solution1.

1 Of course, the specifier and the implementor are generally not the same person, but it is the
specifier who has the domain knowledge. We do not presume that the implementor knows more than
what he can deduce from the specification and the rules associated with the relevant data types.

Further Examples 419

Now consider the corner X of the polygon, annotated as in Figure 11.4, and
suppose, as shown, that a is the only given point in the triangle XYZ. This choice
is only to render the following discussion fairly simple; more complex situations
have to be considered in a succession of smaller steps. First notice that we can
remove the triangle XYW and achieve a smaller polygon which still contains all the
given points by replacing the vertex (corner) X by W. [For future reference this
might be regarded as ‘swinging’ the line YX clockwise about Y to YW, so that it
passes through a.] Now continue rotating the line aW about the point a to get the
edge aZ and hence replace W by a, giving an even smaller polygon.

a

Y

WX Z

Figure 11.4

Applying the same argument to any vertex of the (current) polygon which is not
included in the given set eventually gives us a polygon that is ‘shrink wrapped’
about the given set of points. This leads us to a reformulation of the problem:

Given a non-empty finite set of points, find a subset of these points that
 defines a convex polygon which contains all of the given points.

So, a polygon can be represented by a set of points, but why not use a list, of the
vertices — ordered so as to traverse the polygon in a clockwise direction (say)?
Moreover, doing this, none of the given points will ever be to the left of this
direction of travel. We could even decide to start the list with the vertex having the
most ‘westerly’, most ‘northern’ vertex. Put a little more formally, if any point d
has co-ordinates ”dx,dy’, then we seek the point with the greatest y co-ordinate,

and, if there is more than one, then we select the one which has the least (most
negative) x co-ordinate. Using this representation, the polygon depicted in Figure
11.5 can be encoded as the list ”c, a, b, d, e’. This selection of a start point may
be useful in certain situations, but we shall not insist upon this; an appropriate list
can always be found by cycling the elements of the list.

420 Constructing Correct Software

a

e

d

c

b

Figure 11.5

So the formal specification is

CHull: (point) — poly
pre-CHull(S) – True
post-CHull(S,P) – (point):P · S

¯ convex(P) ¯ ¬(∃x:point)(x ∈ S ¯ x outside P)

where
point – Ù

poly – point+

convex(P:poly) – (#P ≤ 2) Ò (∀a,b,c:point, L,M:point*)
((P = L»”a, b ,c’»M)
˘ (b = first_of(P)
¯ c = first_of(rest_of(P))
¯ a = last_of(P))

˘(a = last_of(front_of(P))
¯ b = last_of(P)
¯ c = first_of(P))

fi angle cba < 180°)
and

x outside P – (∃a,b:point, L,M:point*)
((P = L»”a, b’»M)
˘ (b = first_of(P)
¯ a = last_of(P))

fi angle bxa < 180°)

Further Examples 421

We will not use any of these details, but those of you who know some co-ordinate
geometry can check them out. Suffice it to say that the convexity condition
represents the situation in Figure 11.6 and that the “outside’ness” predicate
corresponds to Figure 11.7. Throughout this problem, the way that angles are
written is crucial so that the angle ZYX relates to the arc between YZ and Y X ,
again moving clockwise.

a c

b

Figure 11.6

a
b

x

x outside ”...,a, b,...’

Figure 11.7

So, the post-condition tells us that the (corners of the) convex polygon P consists
of a subset of the points in S and that none of the points in S lie outside of P.

[These conditions can be used to check the correctness of each stage of algorithm
construction; however, an easier approach is to ensure that these conditions are used
within the actual construction steps.]

A traditional structural splitting tactic can now be applied to this problem, dividing
the set S, achieving convex hulls for each subset, and then combining pairs of hulls
to give the required composite hull. And the specification of the necessary combine
function is immediate:

combine: poly Ù poly — poly
pre-combine(”H,L’) – convex(H) ¯ convex(L)
post-combine(”H,L’, N) – convex(N)

¯ (point):N · ((point):H Ë (point):L)
¯ ¬(∃x:point)(x ∈ ((point):H Ë (point):L) ¯ x outside N)

422 Constructing Correct Software

How to construct a design for the implementation of this function is less obvious
from the specification but can be deduced more easily by reference to pictorial
representations of the possible situations. [Again we shall skip the detailed
mathematical calculations. Although these only amount to finding the slopes of
lines — the ratios of differences in co-ordinates — and distances, they serve only to
cloud the main issues and add extra confusion for those readers who are not
confident in this area of mathematics.] Firstly, we can dispose of the trivial case.

CHull({x}) ¢ ”x’

This has to be checked by substitution.

For the more complex cases, let us represent the smaller hulls by ovals indicating
their general shape and relative position. The hulls are, by definition convex so
this is not unreasonable. There are four basic ways in which a pair of hulls can be
related. These are shown in Figure 11.8. Also included in the diagrams are extra
line segments indicating how the composite hull is achieved.

(i) (ii)

(iii) (iv)

Figure 11.8

In each case, the resultant hull can be found by starting at the ‘most westerly, most
northern’ point of the two hulls (which gives the start of the composite) and taking
the initial direction as being from west to east. Now we build up the list of points
by selecting from two possible next points. (Actually, it is more correct to say
that one of these might be rejected.) These may be two points from the same hull
or one point from either. A typical situation is indicated in Figure 11.9.

Further Examples 423

V

X

W

Y

Z

U

Figure 11.9

Suppose that we are at X and that VW indicates the current direction of traversal.
Y is a possible next point, and Z is the point to be considered afterwards. Angle
WXY is greater than angle WXZ so we skip Y (it might be required later!) and now
examine the acceptability of Z for inclusion in the resultant hull. Again look at the
next point in the hull (the hull that includes Y, Z and U ...). Angle WXZ is less
than angle WXU, so now we can include Z, and the current direction of travel
becomes XZ, and so on. This guarantees that no points are outside of the final
hull, that the resultant polygon is convex (and therefore is a hull), and that all the
corners of the resultant hull are corners of the given hulls.

We’ll stop there. The shape of the algorithms which follow are typical “divide and
conquer” designs. One possible twist is to consider the input set one point at a time
— and derive an incremental calculation — either the point will be internal and not
affect the ‘result so far’ or will be included in this polygon and perhaps cause some
other corners to be deleted. In order to pursue the construction of one of these
algorithms to a complete design, we need to have sufficient domain knowledge; at
the level of detail indicated here and be given all the necessary information within
the specification.

Notice also that the combine function is almost a quantifier (we do not have empty
inputs so the identity rules are not required) and hence a re-formulation based on the
associativity of combine is also possible.

11.2 Topological Sort

This is a classical programming problem related to scheduling — typically the
scheduling of very many tasks within a large project. Here we are not concerned
with any specific project, so we shall describe the general situation in a pictorial
fashion. [In practice, diagrams are often used by engineers to ‘see’ what is going
on, so recourse to pictures is not a great deviation from reality.]

424 Constructing Correct Software

11.2.1 Experimentation

Imagine you have a (very) large number of, typically small, assembly tasks.
Associated with each task there will usually be certain resources — such as
manpower, time, specialised equipment — that are needed in order that the task may
be undertaken. (These attributes are required for subsequent processing,
documentation, determination of critical paths etc. associated with the overall
project. However, they are not relevant to the current problem and we shall ignore
them; they can be added later if required.)

Each task (each activity) may be regarded as a ‘connection’ between two events
(i.e., two situations) and can be represented by the ordered pair ”x,y’, where x and
y are events. The situation x indicates that all the pre-requisites for the current task
have been done (so that it is now enabled); y corresponds to the situation when
this task has been carried out and hence some other tasks may be enabled2. A
complete, but small, project may be represented as in Figure 11.10.

a

j

h

g
f

ed

c

b

Figure 11.10

A more realistic project may involve several hundred events, and these will usually
be numbered (but the numerical values would not be significant, merely a
convenient way of generating lots of new names). Moreover, the diagrams would
probably not be very neat, the ‘start’ and ‘finish’ (which are poor terms anyway as
we shall see) may not be unique, and they may not be easy to find just by looking
— after all, the diagram is unlikely to fit on a single sheet of paper.

Essentially the diagram depicts a partial order. It merely says that certain pairs of
events must occur in a prescribed order. For example, both b and d ‘come before’ e,
but c and e are unrelated so it may be the case that c comes before e, or that e comes
before c, or that they coincide or overlap in time. The diagram is a directed graph
(or digraph) and may be represented as a set, G, of arrows where

G – { ”a,b’ , ”a,d’ , ”b,c’ , ”b,e’ , ”c,f’ , ”d,e’ , ”e,h’ ,
”f,g’ , ”h,g’ , ”h,j’ }

2 There is an alternative formulation which roughly relates to swapping activities and events. Instead
of dwelling on such terms, we want to get to the diagrams, and the mathematical formulation, as
quickly as possible; they are easier to deal with.

Further Examples 425

Here G is small; a corresponding picture is easy to draw, the set is easy to write
down, and we can view it in its entirety. For more complex processes, it is often
convenient not to use the original structure of G but to ‘flatten’ the graph onto a
straight line as in Figure 11.11.

a jh gfedcb

Figure 11.11

From this figure, we simply carry forward the list ”a, b, c, d, e, f, h, g, j’ and
forget about the arrows. But notice that here, and in general, there is more than one
permissible answer. Another ordering consistent with G is as shown in Figure
11.12.

a jh gf ed cb

Figure 11.12

In each of these diagrams, we have retained all the arrows and merely moved the
nodes (the letters representing the events) around and twisted the arrows
appropriately. In the final version, all the arrows point from left to right. That is
the essence of what we are trying to achieve in what is called a topological sort
— to derive a linear ordering of the nodes which is consistent with the arrows in the
given graph.

You may be able to see that this problem is not always soluble. (Don’t worry if
you can’t; we shall presume for the moment that it is and identify the flaw in this
belief as we try to synthesise a program to solve the problem. And then we shall
fix it.)

So the input is a digraph3 (i.e., a set of points and a set of arrows) but not just any
set of arrows. Each arrow must link two distinct elements from the given set of
points. (We can have a point x which is not used in the identification of any arrow,
3 In this chapter, we shall always be concerned with directed graph structures, but the terms graph,
digraph and directed graph will be used interchangeably.

426 Constructing Correct Software

but the ”y,z’ only makes sense if y and z are points in the given graph.) If a
digraph satisfies this property, then we shall say that it is well_defined and hence
we can write down an initial attempt at a specification of a topological sort called
T_Sort0.

Let Node be a set (the type) of node names, and then define

Arrow – Node Ù Node
and a directed graph Dg – ƒ(Node) Ùƒ(Arrow)

A topological sort can then be specified by

T_Sort0: Dg — Node*
pre-T_Sort0(D) – well_defined(D)
post-T_Sort0(”N,A’,L) –((Node):L = (Node):N)

¯ (∀x,y:Node)(”x,y’ ∈ A fi x before y in L)

where
well_defined(”N,A’) –

(∀x,y:Node)(”x,y’ ∈ A fi (x ∈ N ¯ y ∈ N ¯ x ≠ y))

x before y in L – (∃L1,L2,L3: Node*) (L = L1»”x’»L2»”y’»L3)

In pre-T_Sort0, we have no need to refer to the components of D, but in the post-
condition it is convenient to represent D by its components N and A (nodes and
arrows). If we had not done this, we would have had to introduce local names N and
A and to add a clause “D = ”N,A’” within the definition of the post-condition.
Many variants such as this are possible. The particular form used is largely a matter
of taste, but we shall always strive to increase readability.

The post-condition here says that the list L includes exactly the same elements as
the set of nodes N in the graph D. Since N is a set, it has no repeats. Using the
“ :” (“bag of”) cast ensures that #L = #N and that there are no repeats in L .
Additionally, as it says very directly, if x—y is an arrow in D, then x comes before
y in L.

OK, so how can we set about solving this problem. How can we calculate the
answer? First notice that reduction is not going to work. Reducing A — removing
arrows from the input — will permit more variation in L. Removing all arrows in
A will permit any ordering of the elements in L, but A is supposed to constrain the
ordering of L. Reducing N — throwing away nodes (and therefore also throwing
away any arrows that link those nodes) — would also necessitate throwing away
elements in the output list L, and again this contradicts the specification. If we
cannot ‘reduce’ the problem, then perhaps we could apply a “divide and conquer”
strategy but first we consider small versions of the problem which would not be
amenable to sub-division.

Further Examples 427

Let’s play with the problem and take cases where #N = 0, 1, 2 or 3.

If #N = 0, then N = Ø, A = Ø and L = ”’. This must follow since #L = #N, so
L = ”’. We must also have A = Ø since A = Ø ¢ #A = 0;
if #A ≠ 0 (i.e., #A > 0), then there would be some ”x,y’ ∈ A with x before y in
L, and thus we would need to have #L ≥ 2, which is not True. So the input must
be ”Ø,Ø’, and this gives the output L = ”’. Check this piece of reasoning by
substitution into the specification.

pre-T_Sort0(”Ø,Ø’)
¢

well-defined(”Ø,Ø’)
¢

(∀x,y:Node)(”x,y’ ∈ Ø fi (x ∈ Ø ¯ y ∈ Ø ¯ x ≠ y))
¢

(∀x,y:Node)(False fi (x ∈ Ø ¯ y ∈ Ø ¯ x ≠ y))
¢

(∀x,y:Node)(True)
¢

True

and
post-T_Sort0(”Ø,Ø’,”’)

¢
((Node):”’ = (Node):Ø)

¯ (∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”’)
¢

(Ê Á = Ê Á) ¯ (∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”’)
¢

True ¯ (∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”’)
¢

(∀x,y:Node)(False fi x before y in ”’)
¢

(∀x,y:Node)(True)
¢

True

428 Constructing Correct Software

Similarly, if #N = 1, then N = {z} for some z:Node, A = Ø, and L = ”z’.

#N = 1 fi A = Ø by the previous argument, and so we have

pre-T_Sort0(”{z},Ø’)
¢

well-defined(”{z},Ø’)
¢

(∀x,y:Node)(”x,y’ ∈ Ø fi (x ∈ {z} ¯ y ∈ {z} ¯ x ≠ y))
¢

(∀x,y:Node)(False fi (x ∈ {z} ¯ y ∈ {z} ¯ x ≠ y))
¢

(∀x,y:Node)(True)
¢

True

Notice also that

(x ∈ {z} ¯ y ∈ {z} ¯ x ≠ y)
¢

(x = z ¯ y = z ¯ x ≠ y)
¢

(x = z ¯ y = z ¯ x ≠ z)
¢

(x = z) ¯ (y = z) ¯ ⁄(x = z)
¢

False

We don’t actually need to know this, but it illustrates the kind of reasoning
commonly found in graph problems.

We do need

post-T_Sort0(”{z},Ø’,”z’)
¢

((Node):”z’ = (Node):{z})
¯ (∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”z’)

¢
(ÊzÁ = ÊzÁ) ¯ (∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”z’)

¢
True ¯ (∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”z’)

¢
(∀x,y:Node)(”x,y’ ∈ Ø fi x before y in ”z’)

Further Examples 429

¢
(∀x,y:Node)(False fi x before y in ”z’)

¢
(∀x,y:Node)(True)

¢
True

Involving a little more calculation but still straightforward, if #N = 2, then
N = {x,y} for two distinct values x,y:Node. Then we may still have A = Ø, in
which case either L = ”x,y’ or L = ”y,x’ would do. However, if we had
A = {”x,y’} (say), then L =”x,y’ would be the only answer.

So, taking the latter alternative,

pre-T_Sort0(”{x,y},{”x,y’}’)
¢

well_defined({x,y},{”x,y’})
¢

(∀a,b:Node)(”a,b’ ∈ {”x,y’} fi (a ∈ {x,y} ¯ b ∈ {x,y} ¯ a ≠ b))
¢

(∀a,b:Node)
(a = x ¯ b = y) fi ((a = x ˘ a = y) ¯ (b = x ˘ b = y) ¯ a ≠ b)

Then, assuming that x,y are distinct Nodes and (a = x ¯ b = y), so the rules
a¢x, b¢y, a = x ¢ True, and b = y ¢ True hold, we have

((a = x ˘ a = y) ¯ (b = x ˘ b = y) ¯ a ≠ b)
¢

((True ˘ a = y) ¯ (b = x ˘ True) ¯ x ≠ y)
¢

(True ¯ True ¯ True)
¢

True

so
(a = x ¯ b = y) fi ((a = x ˘ a = y) ¯ (b = x ˘ b = y) ¯ a ≠ b)

¢
True

From which it follows that

pre-T_Sort0(”{x,y},{”x,y’}’)
¢

well_defined({x,y},{”x,y’})

430 Constructing Correct Software

¢
(∀a,b:Node)(”a,b’ ∈ {”x,y’} fi (a ∈ {x,y} ¯ b ∈ {x,y} ¯ a ≠ b))

¢
(∀a,b:Node)

(a = x ¯ b = y) fi ((a = x ˘ a = y) ¯ (b = x ˘ b = y) ¯ a ≠ b)
¢

(∀a,b:Node)(True)
¢

True

and then
post-T_Sort0(”{x,y},{”x,y’}’,”x,y’) — see4

¢
((Node):”x,y’ = (Node):{x,y})

¯ (∀a,b:Node)(”a,b’ ∈ {”x,y’} fi a before b in ”x,y’)
¢

(Êx,yÁ = Êx,yÁ)
¯ (∀a,b:Node)(”a,b’ ∈ {”x,y’} fi a before b in ”x,y’)

¢
True ¯ (∀a,b:Node)(”a,b’ ∈ {”x,y’} fi a before b in ”x,y’)

¢
(∀a,b:Node)(”a,b’ ∈ {”x,y’} fi a before b in ”x,y’)

¢
(∀a,b:Node)((a = x ¯ b = y) fi a before b in ”x,y’)

Again we take x,y:Node to be distinct and assume (a = x ¯ b = y) so the rules
a¢x and b¢y hold; then

a before b in ”x,y’
¢

x before y in ”x,y’
¢

(∃L1,L2,L3:Node*) (”x,y’ = L1»”x’»L2»”y’»L3)

¢
True

since ”x,y’ = ”’»”x’»”’»”y’»”’

Thus, referring back to the main calculation,

post-T_Sort0(”{x,y},{”x,y’}’,”x,y’)
¢

(∀a,b:Node)((a = x ¯ b = y) fi a before b in ”x,y’)
4 Notice the different types involved here. The values all use the names x and y, but the first is a set
of Nodes, the second is a set of arrows, and the last is a list.

Further Examples 431

¢
(∀a,b:Node)(True)

¢
True

So this answer works. What we have done here is traditional verification, but we
only advocate this for a very simple instance of a problem. (It is usually quicker
and involves less effort than synthesising an answer.)

We are not going to work through the case when #N = 3, but we shall discuss the
problem. Notice that if N = {x,y,z} and A = Ø, then there are six different
possibilities for L, namely

”x,y,z’ , ”y,z,x’ ,”z,x,y’ ,”z,y,x’ ,”y,x,z’ ,”x,z,y’ .

If we had A = {”x,y’}, this would reduce to three, ”x,y,z’,”z,x,y’ and ”x,z,y’,
and so on. As mentioned before, there is in general not a unique solution but many.
So as to make the non-deterministic nature of the specification more apparent, we
can reformulate it as follows. We shall give the specification and then discuss it
(i.e., read it).

T_Sort1: Dg — Node*
pre-T_Sort1(D) – well_defined(D)
post-T_Sort1(”N,A’,L) –
 (∃Lset: ƒ(Node*))

(Lset = { : Node*| ((Node): = (Node):N)
 ¯ (∀x,y:Node)(”x,y’ ∈ A fi x before y in)}

¯ L ∈ Lset)

Here Lset is the set of all Node lists having the same elements as N and being
ordered in a way that is consistent with all the arrows in A. The ‘answer’ L is then
chosen freely from Lset. [Note that this is a specification. It is not our intention
to actually derive Lset as part of the calculation of L.] Referring back to the
situation where N = {x,y,z}, suppose now that A = {”x,y’,”x,z’}; then the
choices for L reduce to ”x,y,z’ and ”x,z,y’. So far, so good, but what happens if
we now include ”y,x’ in A? This does not fit with either of the remaining two
alternatives. The set Lset is empty and no ‘correct’ value for L can be found; the
problem is insoluble.

Drawing a picture (Figure 11.13) with the elements of N joined up appropriately,
the problem is obvious.

432 Constructing Correct Software

x

z

y

Figure 11.13

There is a loop, albeit a very tight loop. So we can’t put x before y and then y
before x in L. Rremember that L can include only a single copy of x. In fact, a
directed graph D can only be topologically sorted if it contains no loops.

So the pre-condition ought to include a clause which says that D cannot contain
loops, but this is equivalent to saying that D can be topologically sorted and hence
we have a circular argument. We cannot check that the problem is soluble before
trying — and possibly failing — to solve it. We need to check that D can be
topologically sorted as we go along. We modify the specification to reflect this
extra facet of the problem.

11.2.2 A Proper Formulation

Following the discussion above, we add an extra output, a Boolean which indicates
whether we have been successful in our attempt to perform a topological sort on the
given digraph.

T_Sort: Dg — Node* Ù
pre-T_Sort(D) – well_defined(D)
post-T_Sort(”N,A’,”L,sortable’) –
 (∃Lset: (Node*))

(Lset = { : Node*| ((Node): = (Node):N)
 ¯ (∀x,y:Node)(”x,y’ ∈ A fi x before y in)}

¯ ((Lset = Ø ¯ ¬sortable) ˘ (L ∈ Lset ¯ sortable)))

So, if T_Sort(D) = ”L,s’ and s = True, then the search for a consistent listing of
the nodes in D was successful and L is one such listing; otherwise, the search
failed. Note that if Lset = Ø then any list will do for L and the answer is
”L,False’.

When #N ≤ 1 we have A = Ø and hence A cannot contain arrows which cause the
‘sorting’ to fail.

Further Examples 433

Exercises
11.1 Show by substitution that””’,True’ is a solution for T_Sort(”Ø,Ø’).

11.2 Similarly, show that if D = ”{x},Ø’ for some x:Node then ””x’,True’ is
an acceptable result for T_Sort(D).

❑

Now for D = ”N,A’, where #N > 1, the associated data-flow diagram is as in
Figure 11.14.

D = ”N,A’

”L,s’

0

T_Sort

Figure 11.14

We want to split D into D1 and D2 to give L1 and L2, from which we can construct

L. The classical structure, suitably labelled, is given in Figure 11.15.

The specifications of boxes (2) and (3) are the same as box (0) but with different,
smaller, parameters. But how do we specify what goes on in boxes (1) and (4) so
that the new four-box combination is consistent with box (0)?

Consider the possibilities of what to do with an arrow ”x,y’ in A (in D). Recall
that we require that x should come before y in L. If ”x,y’ is put into D1, then x

will come before y in L1, and therefore the combine phase must preserve this

ordering — which knows nothing about x and y, only L1 — so

x before y in L1 fi x before y in L

Similarly, for the case when ”x,y’ is placed in D2, we then require that

x before y in L2 fi x before y in L

434 Constructing Correct Software

D = ”N,A’

”L,s’

1

T_Sort

split

combine

4

32

D1 = ”N1,A1’ D2 = ”N2,A2’

”L1,s1’ ”L2,s2’

T_Sort

Figure 11.15

To satisfy both these requirements, L would have to be the result of overlapping L1

and L2 (preserving the orderings on L1 and L2). But now suppose that ”x,y’ ∈ D

with x ∈ N1 and y ∈ N2 as in Figure 11.16.

D1 D2

x

y

Figure 11.16.

This would give x in L1 and y in L2, as in Figure 11.17.

The only way to guarantee that x comes before y in L, regardless of where x occurs
in L1 or where y occurs in L2, is to concatenate L2 after L1 (i.e., to require that

L = L1»L2). Of course, concatenation satisfies the “bag_of” requirements.

Further Examples 435

D1 D2

x

y

D

L1 L2

x y

Figure 11.17

Now for a “eureka step. There is nothing automatic about this; we have to “invent”
a way of breaking up D and then constructing L. Although we are trying to use
one of the common strategies, the details will vary from problem to problem. The
idea — the intuition behind the eureka step — is that

L = L1»L2

so that if x in L1 and y in L2 then we would require that either ”x,y’ ∈ A (and x is

before y in L, so that’s OK), or ”x,y’ ∉ A (which is again OK), but not that
”y,x’ ∈ A (because then “x before y in L” would be False).

Put the other way around

if ”x,y’ ∈ A then x,y in L1

or x,y in L2

or x in L1 and y in L2

 would be OK, for now.
(The actual ordering of x and y when both are in L1 or both are in L2 will be

determined later, when the corresponding sub-graphs are ‘sorted’.)

So we need a non-trivial mixed strategy. A simple arbitrary splitting of the node

436 Constructing Correct Software

set N, to give N1, N2, etc., independently of A, will not work in general.

Obviously, we require that

 bag_of(L) = bag_of(L1) È bag_of(L2)

 = bag_of(N)

The specification of split is of similar complexity to T_Sort and will involve a
selection from a set of possibilities.

There are three cases, #N = 0,1 or more, but only the third demands special
attention. We attempt to define a splitting function as follows:

split0:Dg — Dg Ù Dg
pre-split0(D) – well_defined(D)
post-split0(D,”D1,D2’) –

(∃Dpairs: (Dg2))
(Dpairs = {””N1,A1’,”N2,A2’’:Dg2|

N1 Ë N2 = N ¯

N1 fl N2 = Ø ¯

N1 ≠ Ø ¯N2 ≠ Ø ¯

A1 · A ¯ A2 · A ¯

(Åx,y:Node)(”x,y’ ∈ A
fi(”x,y’ ∈ A1 ˘”x,y’ ∈ A2 ˘

 (x ∈ N1 ¯ y ∈ N2))) }

¯ ”D1,D2’ ∈ Dpairs)

We divide N into N1 and N2 (without losing or duplicating any Nodes) so that

arrows in A either link Nodes in N1 (and are put into A1) or link Nodes in N2 (and

are put into A2), or start in N1 and end in N2, in which case they are thrown away.

Providing that all the Nodes in N1 are placed before those of N2 in the resultant list,

then their purpose has been achieved.

Of course, as we have seen, attempting a split like this might fail, so this
specification is wrong since it does not allow failure. If split fails, then any list
will be a valid output component for T_Sort, and this can be specified (or not)
elsewhere.

Further Examples 437

Hence we have

split:Dg — Dg Ù Dg Ù
pre-split(D) – well_defined(D)
post-split(D,”D1,D2,splittable’) –

(∃Dpairs: (Dg2))
(Dpairs = {””N1,A1’,”N2,A2’’:Dg2|

N1 Ë N2 = N ¯

N1 fl N2 = Ø ¯

N1 ≠ Ø ¯N2 ≠ Ø ¯

A1 · A ¯ A2 · A ¯

(Åx,y:Node)(”x,y’ ∈ A
fi(”x,y’ ∈ A1 ˘”x,y’ ∈ A2 ˘

 (x ∈ N1 ¯ y ∈ N2))) }

 if Dpairs = Ø
then ”D1,D2’ = ””Ø,Ø’,”Ø,Ø’’ ¯ splittable = False

else ”D1,D2’ ∈ Dpairs ¯ splittable = True

fi)

so we (attempt to) calculate suitable pairs of sub-graphs and, if successful, deliver
one such pair and say that the search was successful or deliver empty graphs and
“False”.

To match this splitting function, we need a suitable combine function. Based on
our earlier discussion, this ought to be

combine: (Node* Ù)2 — (Node* Ù)
pre-combine(””L1, s1’,”L2, s2’’) – True

post-combine(””L1, s1’,”L2, s2’’, ”L, s’)

– ”L, s’ = ”L1»L2, s1¯s2’

So we get a proper answer only if both of the subgraphs were sortable and then the
answer is computed by concatenating the intermediate lists in the appropriate order.

But is this right? Or does it just seem reasonable? Can we legitimately replace
box 0 (of Figure 11.14) by the combination depicted in Figure 11.15?

As always, this needs to be checked — by substitution and evaluation. This is
quite routine, even if long and more involved than anything encountered earlier. We
leave it as an exercise.

438 Constructing Correct Software

As before, we can refine split so as to break off a single element at a time and
obtain an incremental calculation. Doing this suggests a re-structuring of the way
in which the digraph is held in order to facilitate the location of valid ‘next’ points
and their subsequent processing (i.e., their ‘removal’ from the graph and appending
to the end of the output list that represents the polygon, the hull). Details of how
this might be done are not difficult but rather lengthy.

A re-formulation in terms of a quantification based on combine (here concatenation)
is another possibility. Obviously by virtue of the investigations we have carried
out, this leads to a rapid, though ‘inefficient’ implementation design.

11.3 Some Extremal Problems

Here we consider a few related problems which involve finding the largest / smallest
values in, and (the length of) the longest / shortest segments of, lists and arrays
which have certain properties. We start by revisiting an old friend, the listmax
function, and collecting together a few techniques that we have encountered along
the way. We shall then look at how listmax can be developed to deal with so-called
segment problems. The program designs developed here only deliver an extreme
value or the length of an extremal segment, not the position of the value or
segment. The designs can, however, be augmented so that these factors can be
incorporated in the output, but we don’t do that; we concentrate on the simpler and
more central aspects of the calculations.

Example 11.1 Recall the definition of listmax:

LMAX(L: +) – (max i | i: | i in L)

where max — and x max y – if x ≤ y then y else x fi.
vWe use a further name change, to LMAX, to emphasise similarities and differences
in the various routines that follow and to avoid ‘decorations’ which may be
distracting.

Further Examples 439

We are going to lift implementations of LMAX from sets of rules5, of which there
are many.

(a) LMAX(”x’) ¢ x
(x≤y) LMAX(”x,y’»N) ¢ LMAX(”y’»N)
(x>y) LMAX(”x,y’»N) ¢ LMAX(”x’»N)

or
(b) LMAX(”x’) ¢ x

LMAX(”x,y’»N) ¢ if x ≤ y then LMAX(”y’»N)
else LMAX(”x’»N)

fi
or
(c) LMAX(”x’) ¢ x

LMAX(”x,y’»N) ¢ LMAX(”x max y’»N)

The ‘max’ operation is associative, so, with certain provisos, we could utilise
quantification rules, but not directly; hence we adopt the current eureka approach.
vUsing ‘results_so_far and data_remaining’ tuples as in Section 4.3, we devise a

local function F: Ù * — which satisfies the following rules:

LMAX(”y’»N) ¢ F(”y, N’)
F(”v, ” ’’) ¢ v

F(”x, ”y’»M’) ¢ F(”x max y, M’)

or, equivalently,

LMAX(”y’»N) ¢ F(”y, N’)
(N = ” ’) F(”v, N’) ¢ v
(N = ”y’»M) F(”x, N’) ¢ F(”x max y, M’)

These lead to the design

begin var maxval: , N: *;
”maxval, N’ æ ”first_of L, rest_of L’;
while N ≠ ”’

do ”maxval, N’
æ ”maxval max first_of N, rest_of N’ od;

[result æ] maxval
end

❑

5 The reader might well ask why this was not done earlier. The earlier work with this function was
done primarily as a vehicle to describe various derivation techniques. Also, following the ‘rules’
approach yields certain designs. There is bias built into the rules from the outset. Certain designs are
therefore denied to us.

440 Constructing Correct Software

Example 11.2 By analogy (see Section 3.2.4) we can quickly derive LMIN,

which finds the minimal element of L: +. Its definition is

LMIN(L: +) – (min i | i: | i in L)

where min — and x min y – if x ≥ y then y else x fi

This is implemented by

begin var minval: , N: *;
”minval, N’ æ ”first_of L, rest_of L’;
while N ≠ ”’

do ”minval, N’
æ ”minval min first_of N, rest_of N’ od;

[result æ] minval
end

In passing, notice that the following design would also be correct:

begin var maxval: , N: *;
”maxval, N’ æ ”first_of L, rest_of L’;
while N ≠ ”’

do ”maxval, N’
æ ”maxval min first_of N, rest_of N’ od;

[result æ] maxval
end

❑

Following our earlier observations on program readability, notice that the use of the
identifier maxval is perfectly valid and completely misleading to the human reader.
We could obviously include comments that would also be misleading — take care,
and try to use helpful names.

Example 11.3 Now for the array version of LMAX which we call AMAX .
Suppose we have an array A of integers indexed from p to q. This could be declared
as

A: array p..q of
or, more usually,

A[p..q]: with p≤q

Then, following the style of LMAX,

AMAX(A: array p..q of) – AMAX(A[p..q]) by convention,
where AMAX(A[p..q]) – (max A[i] | i: | p ≤ i ¯ i≤ q)

Further Examples 441

and again max — with x max y – if x ≤ y then y else x fi.

As in the list case, but this time having to cope with array indices, we have another
subsidiary function, again called F (but that name will eventually disappear), with
the following rules:

AMAX(A[p..q]) ¢ F(”A[p], A[p+1..q]’)
(i > j) F(”v, A[i..j]’) ¢ v
(i ≤ j) F(”v, A[i..j]’) ¢ F(”v max A[i], A[i+1..j]’)

This can be encoded in a similar fashion as

begin var maxval: , i,j: ;
”maxval, i, j’ æ ”A[p], p+1, q’;
while i ≤ j
do ”maxval, i, j’ æ ”maxval max A[i], i+1, j’ od;
[result æ] maxval

end

and, as j never changes value but is always equal to q, we can simplify to give

begin var maxval: , i: ;
”maxval, i’ æ ”A[p], p+1’;
while i ≤ q
do ”maxval, i’ æ ”maxval max A[i], i+1’ od;
[result æ] maxval

end
❑

Example 11.4 We now move on to segment problems. The first is to find the
length of the longest segment within the integer array, A[p..q], in which all the
elements have the value a. It will be convenient to refer to such a segment as a
run. We shall tackle the problem in two parts, two levels. [By using some of the
quantification rules, some shortcuts can be taken, but we shall not do this. Again
we stress the basic nature of the presentation. With the basics included herein, the
reader who goes on to further study will be able to pull all these threads together
and formulate more powerful rules and transformations.]

The overall definition is

(max (j–i+1) | i,j: | (¯(A[k] = a) | k: | i ≤ k ≤ j))

where A[k] is only defined for values of k such that p ≤ k ≤ q,

442 Constructing Correct Software

or, alternatively and equivalently,

(max m | i,m: | (¯(A[k] = a) | k: | i ≤ k ≤ i+m–1))

Other variants are possible. We could find the lengths of appropriate runs and then
find the maximum of these. Following the lead of the previous examples, and
taking the inner-most problem first, we find the first (reading from left to right)
maximal6 ‘all a’s’ run. After that, we can find the first such list in the remaining
section of the array — if any — and retain the maximum of their two lengths. We
already know how to do this, so first things first.

At the risk of over-parameterisation, we introduce FMR(A[p..q],a) to denote the
First Maximal Run of a’s in the array A[p..q]. Again we introduce a function
having these components, and called F for no particular reason, and the result,
(which will eventually be set to the maximal length of the run) as parameters.

First we establish the link and then propose rules7 for the evaluation of F.

FMR(A[p..q], a) ¢ F(”a, 0, A, p, q’)
(i > j) F(”a, , A, i, j’) ¢
(i ≤ j, =0, A[i] ≠ a) F(”a, , A, i, j’) ¢ F(”a, , A, i+1, j’)
(i ≤ j, =0, A[i] = a) F(”a, , A, i, j’) ¢ F(”a, 1, A, i+1, j’)
(i ≤ j, ≠0, A[i] = a) F(”a, , A, i, j’) ¢ F(”a, +1, A, i+1, j’)
(i ≤ j, ≠0, A[i] ≠ a) F(”a, , A, i, j’) ¢

We start with =0 and move through the array by incrementing i. If we encounter
an a, we set to one and keep incrementing it until we either get to the end of A or
find a non-a element. In either situation, the answer is the current value of .

By inspection, the rules can be reduced to

FMR(A[p..q], a) ¢ F(”a, 0, A, p, q’)
(i > j) F(”a, , A, i, j’) ¢
(i ≤ j, =0, A[i] ≠ a) F(”a, , A, i, j’) ¢ F(”a, , A, i+1, j’)
(i ≤ j, A[i]=a) F(”a, , A, i, j’) ¢ F(”a, +1, A, i+1, j’)
(i ≤ j, ≠0, A[i]≠ a) F(”a, , A, i, j’) ¢

6 Obviously, any run contains a single “a”, but we should not conclude that the length of the run is 1
until we have found that we are at the end of the array or that the next item is not a.
7 The rules used here involve complex conditions. Remember that in such cases the commas should
be interpreted as s and the conditions evaluated sequentially until either the end is reached or one
term fails.

Further Examples 443

Notice that we exit from the loop when

(i> j) Ò (i≤ j ¯ ≠0 ¯ A[i]≠a)

so we continue when

(i≤ j) (i> j ˘ =0 ˘ A[i]=a),

which simplifies to

(i≤ j) (=0 ˘ A[i]=a),

and the code for this follows as

begin var i,j, : ;
”a, , A, i, j’ æ ” a, 0, A, p, q’;
while i ≤ j (=0 ˘ A[i]=a)
do if A[i]=a

then ”a, , A, i, j’ æ ” a, +1, A, i+1, j’
else ”a, , A, i, j’ æ ” a, , A, i+1, j’
fi

od;
[result æ]

end

And this simplifies to

begin var i, : ;
” , i’ æ ” 0, p’;
while i ≤ q (=0 ˘ A[i]=a)
do if A[i]=a then æ +1 fi;

i æ i+1
od;
[result æ]

end

In the wider context of calculating the length of the maximal run, it will be
convenient to know the exit value of i. Hence we have

begin var i, : ;
” , i’ æ ” 0, p’;
while i ≤ q (=0 ˘ A[i]=a)
do if A[i]=a then æ +1 fi; i æ i+1 od;
[result æ] ” , i’

end

444 Constructing Correct Software

Henceforth we can regard this as the code for the function FMR2, which takes input
p (representing the array segment A[p..q]) and delivers (the length of the first
maximal ‘all as’ segment within A[p..i–1]) and, for subsequent use, the value of
i8. We also assume that all other referenced data values are delivered by the
surrounding context.

We can now use this design together with that from the previous AMAX problem
to draw up a set of rules for MAXRUN. Here the situation is slightly different in
that the given array may not contain any a values and hence the maximum run
length may be zero.

Again, we start with the full problem (including all the necessary but constant data
items) and prune down the implementation scheme later on.

We begin with a set of rules for MAXRUN. In the subsidiary — and temporary —
function G, the result parameter, m, represents the length of the maximal run in the
segment of the array so far processed by FMR.

MAXRUN(A[p..q]) ¢ G(”0, A, p, q’)
(i > j) G(”m, A, i, j’) ¢ m
(i ≤ j) G(”m, A, i, j’) ¢ G(”m max , A, k, j’)

where: ” , k’ = FMR2(i)

Hence the design follows mechanically as

begin var i,j,k, ,m: ;
”m, A, i, j’ æ ” 0, A, p, q’;

while i ≤ j
do ”m, A, i, j’ æ ”m max , A , k, j’

where: ” , k’ = FMR2(i)
od;

[result æ] m
end

8 This value of i is either q+1 or the start of a ‘non-a sequence’ following an a.

Further Examples 445

which expands9 and rationalises, first to

begin var i,j,k, ,m: ; var ii, pp, : ;
”m, A, i, j’ æ ” 0, A, p, q’;

while i ≤ j
do pp æ i;

” , ii’ æ ”0, pp’;
while ii ≤ q (=0 ˘ A[ii]=a)
do if A[ii]=a then æ +1 fi; ii æ ii+1 od:
” , k’ æ ” , ii’;

”m, A, i, j’ æ ”m max , A , k, j’
od;

[result æ] m
end

and then to

begin var i, ,m: ;
”m, i’ æ ” 0, p’;

while i ≤ q
do æ 0;

while i ≤ q (=0 ˘ A[i]=a)
do if A[i]=a then æ +1 fi; i æ i+1 od;

m æ m max
od;

[result æ] m
end

❑

Of course, the controlling conditions of the two while loops in Example 11.4 are
related and the two loops can be combined. The way this is done is similar to the
merging of nested quantifications in Chapter 5. Again, we resist the temptation to
get involved with more transformations.

A characteristic of the previous example was that the key property, A[i] =a, did not
depend on other elements in the array. We now turn to a slight variation where there
is a dependence.

9 The variables local to FMR2 have been given new ‘double’ names and their scope widened, and
the input / output assignments have been made explicit.

446 Constructing Correct Software

Example 11.5 Consider the problem, given an integer array A[p..q], where p ≤q
of finding

(max m | i,m: |
(˘ (¯(A[k] = a) | k: | i ≤ k ≤ i+m–1) | a: | True))

Picking the bones out of this, we have to find the maximum length of runs in the
array in which all the elements are equal to some value a, but the a need not be the
same for all runs.

Since ‘=’ is transitive, we can simply test all elements in the potential run with the
first element of that run. Hence we could use the specification

(max m | i,m: | (¯(A[k] = A[i]) | k: | i ≤ k ≤ i+m–1))

Of course, since p ≤ q, the array is non-void, so there are values in the array and
every element is part of a run (of values equal to itself), so the problem is soluble.
Moreover, for the element A[i] with p < i < q, it will be necessary to compare it
with A[i – 1] and A[i + 1] to determine whether it is part of an ‘equal value’
segment of length greater than one.

The solution is rather like that for AMAX. If a segment is not empty, then get the
first and try to ‘grow’ the maximal run which starts there.

When considering the segment A[i..j] where i ≤ j, we take the ith element as the
common value for which we seek the first maximal run length. Using subsidiary
functions similar to those in the previous example, we have

(p≤ q) FMR3(A[p..q]) ¢ F(”A[p], 1, A, p+1, q’)
(i > j) F(”c, , A, i, j’) ¢ ” , i’
(i ≤ j, A[i]=c) F(”c, , A, i, j’) ¢ F(”c, +1, A, i+1, j’)
(i ≤ j, A[i]≠c) F(”c, , A, i, j’) ¢ ” , i’

FMR3 delivers run length and ‘next’ i, which, as before, is either the start of the
next run or q + 1,

and the code for this follows as

begin var c,i,j, : ;
”c, , A, i, j’ æ ”A[p], 1, A, p+1, q’;
while i ≤ j A[i]=c
do ”c, , A, i, j’ æ ” c, +1, A, i+1, j’ od;
[result æ] ” , i’

end

Further Examples 447

Here we have combined the two loops in the previous scheme, which is easier to do
here because of there being fewer conditions. The use of the sequential ‘and’ again
reflects the order of nesting in the earlier design (in Example 11.4) and prevents the
attempt to access A[i] when i has overshot the end of the array.

As usual, we can simplify this to give

begin var c,i, : ;
”c, , i’ æ ”A[p], 1, p+1’;
while i ≤ q A[i]=c
do ” , i’ æ ” +1, i+1’ od;
[result æ] ” , i’

end

We can then utilize the previous derivation of MAXRUN. With the subsidiary
function G, in which the parameter, m, represents the length of the maximal run in
the segment of the array so far processed by FMR4,

MAXRUN(A[p..q]) ¢ G(”0, A, p, q’)
(i > j) G(”m, A, i, j’) ¢ m
(i ≤ j) G(”m, A, i, j’) ¢ G(”m max , A, k, j’)

where: ” , k’ = FMR4(i)

Where FMR4(i) – FMR3(A[i..q]),
other, constant, values being taken from the context.

Mechanically, we have

begin var i,j,k, ,m: ;
”m, A, i, j’ æ ” 0, A, p, q’;

while i ≤ j
do ”m, A, i, j’ æ ”m max , A , k, j’

where: ” , k’ = FMR4(i)
od;

[result æ] m
end

448 Constructing Correct Software

The corresponding assembly of the full design follows as before but is quite
involved, so we include an intermediate version:

begin var c,i,j,k, ,m: ; var ii, : ;
”m, A, i, j’ æ ” 0, A, p, q’;

while i ≤ j
do ”c, , ii’ æ ”A[i], 1, i+1’;

while ii ≤ q A[ii]=c
do ” , ii’ æ ” +1, ii +1’ od;
” , k’ æ ” , ii’;

”m, A, i, j’ æ ”m max , A , k, j’
od;

[result æ] m
end

and ultimately we have

begin var c,i, ,m: ;
”m, i’ æ ” 0, p’;

while i ≤ q
do ”c, , i’ æ ”A[i], 1, i+1’;

while i ≤ q A[i]=c
do ” , i’ æ ” +1, i+1’ od;

m æ m max
od;

[result æ] m
end

❑

Example 11.6. We now turn to the segment problem where the test for
inclusion in the run does need the value of the previous element (if there is one of
course). The run condition here is that the elements are increasing, using the
relation ‘≤’, so the specification is

(max j–i+1 | i,j: |
¯ ((k = j) Ò (A[k] ≤ A[k + 1]) | k: | i ≤ k ≤ j))

and removing the upper limit, j, and using the ‘length’, m, we have:

(max m | i,m: |
¯ ((k = i+m–1) Ò (A[k] ≤ A[k + 1])) | k: | i ≤ k ≤ i+m–1))

Further Examples 449

Following the thread of earlier examples but noting that we need to retain the
immediately preceding element, we have the rules

(p≤ q) FMR5(A[p..q]) ¢ F(”A[p], 1, A, p+1, q’)
(i > j) F(”c, , A, i, j’) ¢ ” , i’
(i ≤ j, c≤ A[i]) F(”c, , A, i, j’) ¢ F(”A[i], +1, A, i+1, j’)
(i ≤ j, c>A[i]) F(”c, , A, i, j’) ¢ ” , i’

The code for this follows as

begin var c,i,j, : ;
”c, , A, i, j’ æ ”A[p], 1, A, p +1, q’;
while i ≤ j c≤ A[i]
do ”c, , A, i, j’ æ ”A[i], +1, A, i +1, j’ od;
[result æ] ” , i’

end

We can then embed this code into the MAXRUN design to give

begin var c,i, ,m: ;
”m, i’ æ ” 0, p’;

while i ≤ q
do ”c, , i’ æ ”A[i], 1, i +1’;

while i ≤ q c≤A[i]
do ”c, , i’ æ ”A[i], +1, i+1’ od;
m æ m max

od;
[result æ] m

end
❑

Example 11.7. Finally we have a problem in which we have to compare
potentially all other elements in the array in order to determine the validity of each
single element within a run. We seek the length of the maximal run within the
array A[p..q] (which may be void, empty) in which all elements are different.
Using the property that we need only compare an element A[j] with elements A[k]
when j < k, we have the problem definition

(max m | i,m: |
 (¯ ((j = k)10 ˘ (A[j] ≠ A[k]) | j,k: | i ≤ j ≤ k ≤ i + m –1))

1 0 This term is to cater for the possibility of runs of length 1.

450 Constructing Correct Software

This is more complicated than the problems in which we need only to make local
comparisons within each run. But there are also similarities, such as the way in
which we obtain the maximal run length, that we shall employ.

Again, for the ‘inner’ calculation, we use a eureka step, which we try to explain as
follows.

Suppose we know that the segment X has no duplicates and hence is a valid run.
This could be the whole of A[p..q], or X could be extended to a maximal run or it
could be followed immediately by a value already in X. It is this last case which is
most significant. Consider the situation depicted below

<---- X ---->
A[i] A[j] A[k]

a a
<---- Y ---->

So, X = A[i .. k–1].

If, when searching through X for a (the value at A[k]), we find it at A[j], then X is
a maximal run and its length is k – i. The next run, Y, starts at j + 1; moreover,
we already know that the segment A[j + 1 .. k] has no duplicates, and hence we
need only start searching for duplicates in Y from A[k + 1] onwards — unless we
already at the end of the array. We now translate these ideas into rules.

We use the function FMR6, which takes the array and delivers the length () of the
first maximal run having no duplicate values, the array index (j), where the
subsequent run starts (if appropriate), and the index (k) in the next run, where we
should start searching for duplicates, but in the order j, k, .

FMR6(A[p..q]) ¢ F(”A, p, p, p, 0, q’)

(k>q) F(”A, i, j, k, , q’) ¢ ”j, k, ’
 exit at the end of the array; the final value of j is of no significance.

(k≤q, j=k) F(”A, i, j, k, , q’) ¢ F(”A, i, i, k + 1, + 1, q’)
 no duplicates so far, including A[k], so extend X and reset j to i

(k≤q, j<k, A[j]≠A[k]) F(”A, i, j, k, , q’) ¢ F(”A, i, j + 1, k, , q’)
 no duplicate so increment j

(k≤q, j<k, A[j]=A[k]) F(”A, i, j, k, , q’) ¢ ” j + 1, k + 1, ’
 end of run detected, so deliver and set new values of j and k for next run

[Notice that throughout these rules i ≤ j ≤ k. This will be a useful fact later.]

Further Examples 451

Routinely we have

begin var i,j,k, : ;
”A, i, j, k, , q’ æ ”A, p, p, p, 0, q’;
while k ≤ q ((j=k) ˘ ((j<k) (A[j]≠A[k])))11

do if j= k
then ”A, i, j, k, , q’ æ ”A, i, i, k + 1, + 1, q’
else ”A, i, j, k, , q’ æ ”A, i, j + 1, k, , q’
fi;

od;
[result æ] if k ≤ q then ” j + 1, k + 1, ’

else ” j, k , ’ fi
end

As might be expected, this simplifies to, say

begin var i,j,k, : ;
”i, j, k, ’ æ ”p, p, p, 0’;
while k ≤ q ((j=k) ˘ (A[j]≠A[k]))
do if j= k

then ”j, k, ’ æ ”i, k + 1, + 1’
else ”j, k, ’ æ ” j + 1, k, ’
fi;

od;
[result æ] if k ≤ q then ”j + 1, k + 1, ’

else ”j, k, ’ fi
end

For the outer, maximum, calculation we have

begin var i,j,k, ,m: ;
”m, i, k’ æ ” 0, p, p’;

while i ≤ q
do ”m, i, k’ æ ”m max , j, k’

where: ” j, k, ’ = FMR712(” i, k’)
od;

[result æ] m
end

1 1 Since j ≤ k and (j = k) fi (A[j] = A[k]), this simplifies to (j = k) ˘ (A[j] ≠ A[k]).
1 2 Here FMR7(”i, k’) is like FMR6(A[i..q]), but here we know that the segment A[i..k–1] contains no
duplicate values and hence we should start looking for duplicates at A[k]. Hence we can define
FMR7(”i, k’) – F(”A, i, i, k, k – i, q’). Hence we need to modify the initialisation step to give the
appropriate start value to .

452 Constructing Correct Software

Putting the parts together, we have

begin var i,j,k, ,m: ;
”m, i, k’ æ ” 0, p, p’;
while i ≤ q
do ” j, ’ æ ”i, k – i’;

while k ≤ q ((j=k) ˘ (A[j]≠A[k]))
do if j= k

then ” j, k, ’ æ ”i, k + 1, + 1’
else ” j, k, ’ æ ”j + 1, k, ’
fi;

od;
 if k ≤ q then ”j, k’ æ ”j + 1, k + 1’ fi

”m, i’ æ ”m max , j’
od;
[result æ] m

end
❑

Well that was quite involved and is certainly complicated enough for an introductory
text. Hopefully the reader can see that by breaking a problem down into layers and
using eureka steps motivated by “divide-and-conquer” and/or reduction techniques,
we can devise solutions to some quite complex problems. Applying the full force
of transformation to the resulting designs can then make them more efficient whilst
retaining their correctness.

Further Examples 453

Chapter 12
On Interactive Software

This book has focussed on the specification and design of programs which carry out
computations (i.e., situations where, given suitable data, we compute an
appropriate result and deposit it in a named location that was hitherto unused).

Clearly, there is more to software than this. The software segments which have
been built from formal specifications (of functions) are themselves of absolutely no
use on their own, despite the fact that virtually all software will include such
computational segments. One glaring omission is that our program designs have
no input or output statements, and none of the specifications have included the
possibility of making changes1 to the contents of named locations. These two
features are in fact instances of the same general characteristic and are easily dealt
with (Section 12.1). In one fell swoop, we can bridge the gap between the
specification and implementation of functions and the corresponding process
applied to operations2.

The requirements of a computation are simply that eventually 3 (in some finite time)
it completes its task, places the result in the expected location,and does this in such
a way as to guarantee that the data and result are related as dictated by the
specification. How long it takes to achieve this is not part of the specification —
indeed, the duration of the computation depends not only on the software but on the
hardware on which it runs.

So-called operational requirements are often regarded as being outside the province
of software design since they depend on factors over which the software engineer has
no control. In isolation, all we can ask is that the software is built so as to meet
its (“functional”) specification and then check to see whether it is fast enough, or
that it fits into a certain size memory. Both these requirements may be attainable

1 Of course, there was a reason for this simplification: it meant that until we synthesised iterations
from recursive constructs, no values (in named locations) were changed — everything was constant,
and there were no side effects, which made the work much easier.
2 Computationally, operations are code sequences which can actually change the contents of named
components within the system. They are also called procedures.
3 This is not even mentioned in almost all texts dealing with algorithm construction. In contrast, when
addressing the needs of computing systems, time and temporal concerns are of great importance.

by using a faster processor and/or more memory. On the other hand, if hardware
resources are fixed, we can always determine a period of time in which a given
computation cannot be completed. Unlike the notion of correctness, which can be
preserved as we proceed with the synthesis process, there is no accompanying
theory that allows software designs to get faster and converge to the optimum.
(Indeed, the optimum might well be achieved by going through a whole sequence of
designs with very poor performance but which allow for subsequent
transformations to be applied and an optimum design obtained.)

Just as most specifications generated by customers are ‘over specifications’ — they
ask for more than they need and include much irrelevant information —
requirements of software systems often include substantial tolerances so as to allow
for ‘slack’.

For example, suppose that we are asked to carry out tasks A and B sequentially and
within a total time of 10 seconds. One possibility is to ask that both A and B, are
each completed within 5 seconds. This preserves design independence4 between A
and B; the time associated with performing A should not depend on B or vice versa,
but this higher-level design step puts, perhaps unreasonable, constraints on both.
Alternatively, we could simply go away and build both and see how long they take.
If the time is less than 10 seconds, then all is well, but what do we do if the
composite task takes too long? (This is one of the main reasons why software
should do only what is asked of it and no more, and why specifications and
requirements should ask for only what is necessary, and no more!)

The logical relationship between the requirements of a system and a specification of
what actions it is to perform is not unlike that between the specification of software
and a correct implementation of it, but it is more complex. In Section 12.2, we
briefly discuss some of the factors involved in this aspect of (software) system
design. That section is included so as to provide a bridge between what might
reasonably be called “Constructing Correct Software Systems” rather than the
contents of this book which really addresses the “Construction of Correct Software
Components”.

4 In a more technical discussion, this notion of independence would be called compositionality; apart
from information passed via declared interfaces, the development of one part of the system should be
independent of the details pertaining to the design of other parts.

456 Constructing Correct Software

12.1 Specifications Involving Change

We have only considered specifications (of computational algorithms) of the form

f1: X — Y

i.e., f1
type: X — Y

etc.

The specification links a given value of x:X to acceptable values of y:Y. The
variable x is considered as the input, and its value is accessed but not changed. The
variable y, which represents the result, has no initial value, and the specification
characterises the non-empty set of values (dependent upon the given value of
x˜ f1) from which one is assigned to y. This is therefore not a change of value.

Notice also that changing the input value of a function is expressly forbidden.

As we shall see below, it is possible to write specifications that indicate that
values, such as x here, are allowed or required to change. But these are specified
changes rather than ‘housekeeping’ changes introduced to control or support the
computation. Primarily, we are concerned with the specification of software in
terms of external observations, and we consider several possibilities.

Because the concept of input and output operations is familiar to the reader, we
shall start our discussion of matters related to state changes by addressing the
specification of these operations. Notice also that we have previously only
considered the evaluation of functions that have been enabled (i.e., functions whose
data values are known to satisfy the corresponding pre-condition). We now move to
situations where functions (and operations) might become disabled by the actions of
other system components.

12.1.1 Specification of Input/Output

Suppose now that x is taken from a list of type X* (x is the first element of the
list) and y is placed at the back of a list of type Y*. Here, the lists may be regarded
as external queues of data values and results, respectively.

The type of this related computation is not X* — Y*. The input list is still
available after the calculation but has been changed. Likewise the output list is
changed rather than initialised. More properly, the type might be

X* Ù Y* — X* Ù Y*

On Interactive Software 457

[Compare this with the use of X Ù Y as part of the underlying types in the design
of iterative procedural designs for a computation of type X — Y.]

Not only do ‘input’ and ‘output’ have the same structure, but there is a stronger
connection: they have the same variables, the input is an X list and a Y list, and
the output consists of updated (changed!) versions of the same lists. To indicate the
correspondence between initial and final values, the final value of the ‘name’ is
decorated with dash/prime.

Instead of writing
type: X* Ù Y* — X* Ù Y*

to indicate that the same names occur ‘on both sides’, we write

states: X* Ù Y*

Eventually, we will move to the situation where, in a state, names stay fixed but
the values which they have can change.

Assuming that pre-f1 is identically True, we can then write

f2
states: X* Ù Y*
pre-f2(”xs,ys’) – xs ≠ ”’

post-f2(”xs,ys’,”xs',ys'’) – ys' = ys»”f1(first_of(xs))’

¯ xs' = rest_of(xs)

or, to separate out the different phases,

post-f2(”xs,ys’,”xs',ys'’) –

(∃x:X, y:Y)
(xs = ”x’»xs' [read]5

¯ y = f1(x) [calculate]

¯ ys' = ys»”y’) [write]

Here x, y are local variables and f1 is as specified by pre-f1 and post-f1.

xs = ”x’»xs'
is the ‘get input’ phase.

5 As will be seen in Figure 12.1, the underlying order of evaluation is determined by the three clauses
and there is no need for sequential Boolean operators; but using them to emphasize the ultimately
necessary ordering does no harm.

458 Constructing Correct Software

It is a communication. It accesses an ‘external’ variable, xs, and in this case xs has
its value changed. [Notice the more compact, but less explicit, form used here
rather than using the first_of and rest_of functions. Note also the possibility of
other agencies changing external values, such as xs being given extra input values,
possibly by the user?]

y = f1(x)

is the calculation phase. It uses only local variables and determines the value of y.

ys' = ys»”y’

is another communication6. It changes the value of ys to ys'.

Now, provided that the condition pre- f1, is satisfied, the central computation can’t

fail since the variables x and y are local. The value of x has been found, the value
of y will be generated, and no other process can access or change these values.
Moreover, if the computation is interrupted7 for a finite period, the calculation will
still give a valid answer.

‘Correctness’ of the communications can, in general, only be guaranteed if we have
only a single process (here, a single program) and a single processor. In this
situation, if the pre-condition ‘xs ≠ ”’’ holds at the beginning of the computation,
then it will remain True until it is changed (to xs') as the implementation of f2 is

executed. In particular xs has at least one element, so the evaluation of rest_of(xs)
will not fail.

However, if other processes exist and one seeks to read from xs, then the possibility
arises that the list xs may have been accessed, and emptied, between the times when
f2 was enabled (i.e., pre-f2 is known to be True) and f2 was evaluated. We need to

prevent such a possibility. This could be done by demanding that no interrupts be
allowed between a successful pre-check and a call of the routine. To reduce the
extent to which this constraint affects other processes, we need only apply the
restriction to the ‘get input’ phase. In fact, we can reduce the restriction even
further and allow interrupts, providing that (all) the data accessed in this phase is
protected (is made ‘private’ — albeit temporarily).

6 So as to demonstrate the range of possibilities, we shall now give several different operations using
the same embedded calculation. In Section 12.1.2, we shall give the relationship between function
evaluations and common read and write operations.
7 The possibility of interrupts is another factor that needs to be taken into account when dealing with
more complex systems but, apart from a brief discussion in Section 12.2, it lies outside the scope of the
current text.

On Interactive Software 459

Returning to our specification and now allowing a more general pre- f1 condition

(i.e. not identically True),

f3
states: X* Ù Y*
pre-f3(”xs,ys’) – xs ≠ ”’ pre-f1(first_of(xs))

post-f3(”xs,ys’, ”xs', ys'’) –

(∃x:X, y:Y) (get_input, with private data
¯ calculate
¯ write)

where get_input, calculate, and write are as before.

[Recall that the connective is the lazy /sequential/conditional ‘and’ that is defined
axiomatically by

True P ¢ P False P ¢ False

Over Boolean values is exactly the same as ¯ but, as in the case above, P may
not always be defined.]

Still with the assumption that write never fails, we can go further.

f4
states: X* Ù Y*
type: — 8 — there is no input ‘parameter’
pre-f4(”xs,ys’) – True

post-f4(”xs,ys’,”xs',ys'’,b) –

b › (∃x:X, y:Y)((get_input1 calculate write))

where
get_input1 ¢ (xs ≠ ”’ pre-f1(first_of(xs)) xs = ”x’»xs')

and
write ¢ ys' = ys»”y’

f4 is more properly ‘try to do f3’. If it delivers True, then the lists xs and ys are

changed appropriately. If it delivers False, then the get_input1 was not enabled
(meaning here that xs had a first element and it was suitable as data for f1), and we

usually require that no changes are made to xs and ys. Of course, the ‘b ›’ part of
the specification not only delivers a result but ensures that the post- f4 condition

evaluates to True (as is required by any enabled specification). Unfortunately, when
b is False, it also allows xs' and ys' to assume any values, and this may not be
what is desired.
8 Notice here that the signature has been extended to include an output as well as a state change and
is written as (X* Ù Y*) — ((X* Ù Y*) Ù). In the next variation, this output is absorbed into the
state.

460 Constructing Correct Software

Using the lazy ‘or’ operation, we fix this9 — but we shall greatly improve the
notation later.

f5

states: X* Ù Y* Ù
pre-f5(”xs,ys,b’) – True

post-f5(”xs,ys,b’,”xs',ys',b'’) –

 (get_input1 calculate write b')
Ò (⁄get_input1 ¯ xs' = xs ¯ ys' = ys ¯ ⁄b')

In a correct implementation, if get_input1 succeeds, then so will calculate and
write, and b will be set to True. If it fails, then the values of xs and ys are
preserved and the final value of b (i.e., b') is False.

To cut down on the duplication of text within the specification, we now introduce a
name for the state (and names of the components within the state) and write

f6

states: S (– {xs:X*, ys:Y*, b: })10

pre-f6 – True

post-f6 – (get_input1 calculate write b')

˘ (⁄get_input1 S' = S[b' Ÿ False])

The last clause being read as S' (the new value of S) is as the original but with its b
component (i.e.< b') set to False. This and related notations are very useful when
the state has many components but only a few change.

These specifications all relate to the processing of one specific element from the list
xs (or an attempt to do this). This requirement — to process only one element —
is a system design decision. Alternatively, it may be required to process the entire
list sequentially so as to absorb all of xs and fill ys with the results of the embedded
calculation. Hence the data objects communicated are of type X* and Y*, rather
than X and Y.
9 And, to defer details of x and y, we avoid them by replacing x by first_of(xs) and equating xs' with
rest_of(xs) and so on.
1 0 This notation needs explaining. Although superficially S looks like a set, we really want to use it as
a ‘lookup’ function — but to write it out in full is very inconvenient. The domain of S, S, is a set of
names, and S is a mapping from those names to their current values. Applying S to one of these names
gives a value of the appropriate type so, for example, S(xs):X*. If S(xs) =”a, b,c’,
then (xs Ÿ ”a, b, c’) ∈ S. The construction S[xs Ÿ ”’] would then represent a new function which
is identical to S except that it maps xs to the empty list. Of course, any other value could be used.
Also, using S' to denote the new value of S, rather than writing S' = S[xs Ÿ ”’], we would use

S[xs' Ÿ”’] instead, thus emphasising that the new value of xs is ”’.

On Interactive Software 461

f7

states: xs:X*, ys:Y*
pre-f7 – (∀x:X)(x in xs fi pre-f1(x))

¯ ys = ”’
post-f7 – xs' = ”’

¯ ys' = f1*(xs)

Recall that f1* indicates that f1 is applied to each element of its argument and the

list structure of the input is preserved in the output.

Again, allowing interference can cause problems in a multi-process system. Since
ys = ”’ in the pre-condition and this property is needed to ensure that the write
phase works correctly, the easiest way to guarantee non-interference is to stipulate

f7 with private data

which would bar access to xs and ys (and the changing of their values) by other
processes.

Note that breaking down of f 7 into a sequence of operations as in f6 is a software

design task. To include this within an initial specification of the software may
amount to over-specification.

Expressing f7 in terms of the three phases used earlier would give

f8

states: xs:X*, ys:Y*
pre-f8 – (∀x:X)(x in xs fi pre-f1(x)) ¯ ys = ”’

post-f8 – (∃loc_xs:X*, loc_ys:Y*)

(loc_xs = xs ¯ xs' = ”’
¯ loc_ys = f1*(loc_xs)

¯ ys' = ys»loc_ys)

The data-flow diagram for the post-condition is given in Figure 12.1.

462 Constructing Correct Software

f1*

loc_xs

loc_ys

xs ys

ys'xs'

Figure 12.1

The structure of the diagram indicates that, without loss of generality, we could
have written

(loc_xs = xs ¯ xs' = ”’)
 (loc_ys = f1*(loc_xs))

 (ys' = ys»loc_ys)

12.1.2 Conventional ‘Communications’

Clearly, the variations in the ways in which we can incorporate f1 as the only

computational element within an operation are numerous. Great care is needed
when specifying such operations, particularly in regard to which ‘variables’ have
their final values determined by f1, which have to retain their initial values, and

which have undetermined final values.

On Interactive Software 463

We need to distinguish between the notions of looking, and taking, and showing
and giving.

Notwithstanding previous variations in notation used to represent states, we adopt
the following:

S – {input:X*, output:Y*, x:X, }

This is shorthand for the proper version of S, which is a function from names to
values. In the display above x:X represents x:name Ÿ ?:X which means that x is a
name that, in the state S, maps to the value ‘?’ and which is of type X. So the
domain of (the function) S is the set {input, output, x, ... } and, overloading the
use of S to represent both the function and its domain, we allow the use of notation
such as x ∈S when we really mean x ∈ S .

This is consistent with earlier footnotes and, in particular, if x is a specific name in
S and y is an arbitrary name in S, then the value of x in state S (usually written
simply as ‘ x ’) is more properly S(x), and after the state update S ' = S[x Ÿ v], or
S ' = S[x ' Ÿ v], to emphasize that the value of x in S' has (potentially) changed
from that in state S.

S'(x) = v and, providing that y is different from x, S'(y) = S(y),
 — so the new value of y is equal to the old one.

We can then specify

read_into(x) x ∈ S
State: S
type: x:name —
pre-read_into – input ≠ ”’ i.e., S(input) ≠ ”’
post-read_into – S' = S[input' Ÿ rest_of(input), x' Ÿ first_of(input)]

This is a get operation, a data value is taken from the input list and passed to x.

A similar but different situation is a non-destructive read, which merely ‘looks’ and
copies

copy_into(x) x ∈ S
State: S
type: x:name —
pre-copy_into – input ≠ ”’
post-copy_into – S' = S[x' Ÿ first_of(input)]

464 Constructing Correct Software

In the opposite direction, we can have

write_from(x) x ∈ S
State: S
type: x:name —
pre-write_from – ‘enough space in output’
post-write_ from – S' = S[output' Ÿ output»”x’]

and

display_in(y) y ∈ S
State: S
type: y:name —
pre-display_in – ...
post-display_in – S' = S[y' Ÿ ‘some computed value’]

But here the scope of y must extend beyond the current portion. This feature has
elsewhere been called a beacon, a value that can be seen from afar. It may have
‘global’ scope, but its value can only be changed by its ‘owner’.

Using the same kind of notation, we can express the function call derived from
‘y = f(x)’ as an operation having the specification

State: S
type: x:X, y:name —
pre – pre-f(x)
post – T ' = T [y' Ÿ z] where post-f(x, z), and T = S Ë {x, y}

Having got this far, we can even specify such statements as the (integer)
assignment ‘x æ x + 1’, by

State: S
type: x:name
pre – x ≠
post – S' = S[x' Ÿ x + 1] or S[x' Ÿ S(x) + 1]

where represents the undefined integer value. Think of it as a place where an

integer can be stored, but there is none there at the moment.

On Interactive Software 465

12.1.3 The Enabling of Computations

Potentially, the use of connectives causes problems when we attempt to remove
restrictions so as to allow multi-processing. Ideally, we should have expressions of
the form

A B C ...

such that A is a predicate involving only the initial state and that if A succeeds
(i.e., gives the value True) then so does B and C etc., (so, A enables B C ...).
Then, if A fails, there is no implied state change — but any is possible — and the
result is False. On the other hand, if A yields True, then the entire expression is
True and the state change is, perhaps non-deterministically, determined by B, C etc.
Relating this discussion to specifications, we observe two facts. Firstly, so as to
avoid unintentional arbitrary values, some other disjunctive clause in the
specification must guarantee that some action is possible, and the post-condition
therefore yields True. Secondly, A logically includes all the necessary ‘pre-
conditions’ for B, C etc.; it enables them. But this should not imply circularity
such as the need to evaluate B in working out A.

To fix this problem, we could write

(A B C ...)
˘

(⁄A S' = S)

so if A is True then the action specified by B C ... is enabled, but now it is
the only action enabled and it must be carried out.

12.2 Pertaining to (Software) Systems

When designing systems, (systems in which software, in the form of programs and
processes, is embedded, often as a controller), it is usually not appropriate to start
by identifying what the system should do, but rather why such a system is required.
Given a set of (operational) requirements, deciding upon the components (the
hardware, etc.) and how they should act is itself part of the design process. Where
computers are involved, this includes deciding upon what actions should be
undertaken when certain conditions hold and including these in the specification of
the software. How best to do this is still the subject of much research, although
techniques do exist for handling certain common (and relatively simple) situations.
Here, as a parting shot, we merely mention some of the factors which need to be
considered and some mathematical notations which can be used.

466 Constructing Correct Software

So, in developing software systems there are three ‘levels’ which might be
considered, in reverse (i.e., bottom-up) order, these are:

implementation, which tells the software how to perform each action;

specification, which says what actions are to performed (and when)
and

requirements, which says why the system is needed.

The last two of these deserve closer investigation. (Implementation can be derived
from segments of the specification as described in the earlier chapters.)

12.2.1 System Requirements

The kind of computer-based system for which software is required includes not only
those systems that comprise a computer with end-user peripherals but also systems
that have components other than a computer and its human users. Obvious
examples from outside the professional orbit of most computer scientists and
software engineers include:

• a railway crossing system (for a flat road/rail intersection), and

• an intelligent domestic heating system — to achieve and maintain a
certain temperature range over a given period each day.

It is desirable that the requirements are described in terms of externally observable
characteristics (i.e., nothing to do with a possible system design). Actually
deciding to have traffic lights and railway signals and then calculating where they
should be positioned is all part of the design process and should not be included in
the statement of requirements.

Classically the requirements of a system have two components, a safety
requirement, in which we state the ‘bad’ situations that should never arise, and a
liveness requirement, that something ‘good’ should happen.

Safety
Henceforth bad things don’t happen
(for all, future, time from “now” ...)

Liveness
Eventually desired outcomes are achieved

On Interactive Software 467

But processes conceptually go on for ever, so the liveness requirement needs to hold
starting at any time in the future andso the liveness requirement becomes

Henceforth, eventually ...

The liveness ensures that we make progress11.

Theoretically, this is all we need, but often we wish to say something more about
how the system should run. (This therefore encroaches on specification as opposed
to requirements.) For instance, we may wish to stipulate that the system should
not “pause” for an unreasonable amount of time. Notice how time now comes into
play so for instance the logical clause “x > y” now no longer means that x is
greater than y, for ever. Since x and y may change in value “x > y” means that “x
> y” now. To convey the old meaning we now have to write

henceforth (x > y)

or, in symbols,

Ì (x > y)

[x and y are now effectively functions of time, so

Ì (x > y) can be thought of as12 (∀t:Time) (t > now fi x(t) > y(t))]

Similarly,

eventually x > y

is written

Ó (x > y) and is like (∃t:Time) (t > now fi x(t) > y(t))

As might be expected, there is a whole bunch of mathematical rules involving these
new operators and which can be used to investigate consistency of a specification
with a statement of requirements.

Additionally, we might want one particular activity or requirement to take priority
over another, and we can add extra clauses which dictate priorities within the
requirements. For example, we might wish that the system be obliged to take one
course of action in preference to another, even though both are enabled and the
system could hitherto do either.
1 1 Within many systems, we have situations when nothing happens (or at least nothing seems to
happen). But in order to make progress — to the next stage and eventually to the goal — we must
insist that there is only a finite delay before the next change. This is often called stuttering.
12 These possible characterisations of Ì and Ó suppose a linear model of time. This may not be
appropriate if each ‘processor’ has its own clock. We say no more.

468 Constructing Correct Software

Referring to the railway crossing example, these different aspects of requirements
can be illustrated by

• safety — at most one vehicle should be on the crossing at any time

• liveness — eventually all vehicles that approach the crossing should pass
over it.

• priority — (providing that it is safe to do so) we give priority to trains.

12.2.2 Specifying Systems

As noted above, ‘design’ of a system involves determining how it should interact
with its environment, what components are required, what activities the system
should carry out and how these should be sequenced, and specifying the control
software. (And for this design to be correct, it must be shown to be consistent with
the given statement of requirements.)

The requirements of an interactive system can be expressed in the form

henceforth P13 ¯ eventually Q

or, in symbols,
Ì P ¯ Ó Q

In a ‘simple’ system, which can be regarded as moving from one state to another in
a (perhaps infinite) sequence, a specification of the system reduces to the
specification of the state changes. Such a specification then satisfies the system
requirements if every state can be shown to have the property P and from that state,
providing that all subsequent system activity is correct, we can reach (in a finite
time) another state in which Q holds.

In more complex (multi-processing) systems, we may never truly reach a time
when no processing is taking place, and hence we cannot take a snapshot of the
‘current’ state at any time. Consequently, relating specification to requirements of
one of these systems is less straightforward, but it can be done.

The specification of a software system consists of the specification of a number of
processes, and each process may be defined by the reactions 14 that it can undertake,
the conditions under which such reactions are allowed (i.e., when they are enabled),
1 3 This means that at all time steps (when we are allowed and able to see the relevant information —
so, for example, we cannot access values part of the way through the execution of a program
command — P has to hold). On the other hand, as in traditional computation, we work towards Q. Q
does not hold until we get to the ‘end’ (if ever). Verification and ‘correctness by construction’ for
interactive systems is therefore more involved than for pure calculations.
14 An action instigated by some (external) stimulus that can change (part of) the state of the system.

On Interactive Software 469

and a structure that dictates the acceptable orders of execution when more than one
is enabled. Indeed, an implementation of such a system may well have many
processors and hence parallel and distributed processing may be possible. The
specification should be independent of this possibility and be equally applicable to
single- or multi-processor implementations or to (computer) systems where the
available processing power changes dynamically.

The software specification might be so detailed as to look like a ‘pseudo program’.
Whilst this may be regarded as cheating, it is often the case that the interactions are
so complex as to dictate more detail than might seem necessary. Although any
details not strictly required can be removed by transformations, it is desirable that
these specifications be as abstract as possible.

The specification of a software system includes a (finite and/or fixed?) set of
(“input” — “calculate” — “output”) programs. When appropriate, each program
has to be enabled (this effectively this means that its pre-condition must be
satisfied) and then selected (indicating that the system is now required to perform the
associated action). These two aspects correspond to the permission/obligation
primitives of deontic logic. Within the specification, there may be temporal and
“timing” constraints; these are clearly related to the classical connectives of
predicate calculus together with notions of sequencing.

Although sequences of mathematical formulae — specifying an enabling condition,
its preamble, and subsequent ‘calculation’ — are useful for verification purposes, it
is often more convenient for design purposes to represent system specifications
graphically15.

Once enabled, a calculation acting only on local data cannot fail, and (pure)
communications do not change atomic data values but merely the way in which
they are held in various data structures. It is therefore reasonable to link the pre-
condition of a calculation to the pre-condition of the preceding communication (if
there is one). This almost amounts to the suggestion of building specifications of
more complex (reactive) software out of communication/computation pairs. Such a
strategy would facilitate the generation of sequences of interactions and fit closely
with the philosophy of specifying software in terms of visible external actions and
hidden internal actions. The only slight variation on the notion of such pairs is
that the communication must ‘deliver’ data suitable for the following computation,
thus avoiding an enforced pause in processing or logical backtracking in an
elaboration of the specification.

1 5 One formalism which copes with all the aspects of requirements to which we have alluded is
“Statecharts”. For details, the reader is referred to, Harel, D., “Statecharts: A Visual Formalism for
Complex Systems”, Science of Computer Programming, 8 (1987).

470 Constructing Correct Software

Hence, in much the same way as the specification of a function may be identified
with the predicate

pre-f(x) post-f(x,y)

we have for the input phase16

suitable_data_available get_it compute

and for the output phase

suitable_data_available write_it skip.

[‘Skip’ is the identity process, it involves no change in state, and its predicate
delivers the value True. It is the identity relation on the set of states and could be
omitted. It is included here merely to show adherence to the emerging ‘standard’
pattern. Elsewhere it is needed for logical completion so that ‘all clauses do
something even if it is the identity operation’.]

The general structure of a functional specification of the (reactive) software
component of a complex system might be

Ì ((cond1 preamble1 calc1)

˘ (cond2 preamble2 calc2)

˘ ...
˘ (condn preamblen calcn))

 and again we could use lazy operators to enforce priorities.

On each ‘pass’ at least one of the conditions cond1 to condn must be True,

indicating enabled actions (the preamble of which handles communication and is
followed by a pure, non-communicating, calculation).

Operationally, one of the enabled actions is begun. The preamble must be carried
out next and hence does not permit interference by any other processing; the
calculation is then done using the data passed on by the preamble, and so on.

1 6 With suitable restrictions on accessibility to data; this can be done with the ‘next’ operator, Ô.

On Interactive Software 471

Unfortunately, there may be complications (which must be handled by the
conditions):

• the actions may be ranked so as to indicate priorities (using Ò, for example);

• at run time there may be more than one processor available;

• one process (running on one processor) may be interrupted by another, and
then subsequently resumed;

• similarly, one process might be aborted by another, in which case data
extracted in its preamble will be lost.

In certain cases, when two reactions apparently have equal status, we might wish to
indicate that neither one should be given preferential treatment — that they should
be treated ‘fairly’. This is difficult to do without effectively counting their
activations and trying to keep the respective counts as equal as possible, another
factor that we might be asked to consider in the system design.

As you will gather, there is more to software systems than mere calculation
(performed by algorithms). But at least we have made a start, and being able to
generate correct algorithms — being able to guarantee that all the algorithms we
generate are correct — is a contribution which can be employed in all but pure
communication software.

472 Constructing Correct Software

Appendix
Transformation Digest

A.0 Re-write Rule Conventions

Any definition may be used as a rewrite rule, perhaps within a progression of
unfold / fold steps, so we have a general conditional meta rule:

(x – y) x ¢ y

Conditional rules that involve complex conditions involving a sequence of
conjuncts, such as

(a b) x ¢ y

can be represented in abbreviated form as

(a ,b) x ¢ y

so the condition / guard (a b c ...) can be written as (a , b, c, ...).

A.1 Data Manipulation Rules

Following some general rules, the rest are ordered by type.

There are some generic properties associated with functions that can be expressed as
the highly parameterised rules

(¬X::Type,Y::Type)
(¬f :X — Y)

(¬x,y:X)
(x = y) f(x) ¢ f(y)

(¬X::Type,Y::Type)
(¬f,g:X — Y)

(¬x:X)
(f = g) f(x) ¢ g(x)

(¬X::Type,Y::Type)
(¬f,g:X — Y)

((f = g) (∀x:X)(x∈ f (f(x) = g(x))
f ¢ g

(¬X::Type,Y::Type)
(¬f :X — Y)

(¬x:X) (f(x)) y ¢ f(y)

(¬X::Type,Y::Type)
(¬f :X — Y)

(¬x:X) (f(x)) x ¢ f(x)

(“text” = “text”) ¢ True
where “text” represents a valid
 — well-formed — expression

 other than Unknown.

(Unknown = Unknown) ¢ Unknown

Brackets can be used with all types so as to clarify or disambiguate the
linear/textual form associated with a particular structure/type tree.

(Meta-) rules generally involve ‘variables’ which can be instantiated to a constant
using the ¬-substitution mechanism. Once appropriate substitutions have been
carried out and we have a rule which only involves known constants, it is of little
further interest, and its use to evaluate expressions is simply referred to as
‘arithmetic’, even if there are no numbers present.

Of course, the correctness of all such rules must be checked, but we presume that
this has been done as part of the system implementation.

474 Constructing Correct Software

A.1.1 The Type

Type/Class (Boolean)

values (–{True,False})
operations: True —

False —
⁄ —
¯ —
˘ —

 fi —
› —

rules: (¬a,b,c:)
a ˘ b ¢ b ˘ a ˘is commutative
a ˘ a ¢ a ˘is idempotent

a ˘ (b ˘ c) ¢ (a ˘ b) ˘ c ˘is associative
a ˘ False ¢ a

False is an identity element for
the ˘ operation

a ̆(⁄a) ¢ True
a ̆True ¢ True True is a null element for ˘

a ¯ b ¢ b ¯ a ¯ is commutative
a ¯ a ¢ a ¯ is idempotent

a ¯ (b ¯ c) ¢ (a ¯ b) ¯ c ¯ is associative
a ̄True ¢ a

True is an identity element for
the ¯ operation

a ̄(⁄a) ¢ False
a ¯ False ¢ False False is a null element for ¯

⁄True ¢ False
⁄False ¢ True

⁄⁄a ¢ a involution

a ¯ (b ˘ c) ¢ (a ¯ b) ˘ (a ¯ c) ¯ distributes over ˘
a ˘ (b ¯ c) ¢ (a ˘ b) ¯ (a ˘ c) ˘ distributes over ¯

a ˘ (a ¯ b) ¢ a absorption law
a ¯ (a ˘ b) ¢ a absorption law

⁄(a ¯ b) ¢ (⁄a ˘⁄b) deMorgan’s law
⁄(a ˘ b) ¢ (⁄a ¯⁄b) deMorgan’s law

Appendix 475

a fi b ¢ (⁄a) ˘ (a ¯ b)
a fi b ¢ (⁄a) ˘ b

a › b ¢ (a fi b) ¯ (b fi a)
a › b ¢ (a ¯ b) ˘ (⁄a ¯⁄b)

a › a (¢ True)
a › b ¢ b› a

 ((a › b) ¯ (b › c)) fi (a › c) (¢ True)
 a fi a (¢ True)

(a fi b) ¯ (b fi a) ¢ (a › b)
((a fi b) ¯ (b fi c)) fi (a fi c) (¢ True)

a ¯ b fi a
a fi a ˘ b

(True fi b) ¢ b
(False fi b) ¢ True

(a fi True) ¢ True
(a fi False) ¢ ⁄a

(a fi b) ¢ (⁄b fi⁄a)
 (a fi b) fi (a fi (b ˘ c)) (¢ True)
 (a fi b) fi ((a ¯ c) fi b) (¢ True)

((a fi b) ¯ (⁄a fi⁄b)) ¢ (a › b)

(a fi b) a ¢ a ¯ b
(a fi b) b ¢ a ˘ b

(a ¯ (a fi b) ¯ b) ¢ a ¯ (a fi b)

(a ¯ b) › True ¢ (a › True) ¯ (b › True)

a ¯ b ¢ a ¯ (a fi b)

(a › b) a ¢ b

476 Constructing Correct Software

A.1.2 Extended Logic and Conditional Expressions

Type/Class Generic Conditionals
(¬W::Type,X::Type,Y::Type)

values (–{True,False}), (–{True,False,Unknown}), W, X (X ≠) , Y
operations:

 —
 Ò —

 ¿ —
if then else fi —
if then else fi —

if then fi —
if then X else X fi — X

rules: (¬a,b,b1,b2,c: , p,q,r,p1,q1,p2,q2: , x,y,z:X, w:W , f :X—Y, g:WÙX —Y).

True a ¢ a
False p ¢ False

True Ò p ¢ True
False Ò a ¢ a

a b ¢ a ¯ b note b:
a Ò b ¢ a ˘ b note b:

a (p q) ¢ (a p) q note p:
a (b q) ¢ (a ¯ b) q note b:

a ¯ (b p) ¢ (a ¯ b) p

a (p ˘ q) ¢ (a p) ̆(a q) —see1

(a ˘ b) p ¢ (a p) ˘ (b p)

(a p) ¯ (b q) ¢ (a ¯ b) (p ¯ q)
(a Ò p) ˘ (b Ò q) ¢ (a ˘ b) Ò (p ˘ q)

(a p) ˘ (⁄a b p) ¢ (a ˘ b) p

(a p) ̄(⁄a q) ¢ False

(a p) ˘ (b q) fi (a ˘ b) (p ˘ q)

1 Here p and q are of type and · so p ˘ q is only defined when p is True or False and q is
True or False, and then we use the ˘ — operation.

Appendix 477

(a ¯ b) Ò (p ¯ q) fi (a Ò p) ¯ (b Ò q)

⁄(a p) ¢ (⁄a Ò⁄p)
⁄(a Ò p) ¢ (⁄a ⁄p)

a ¿ p ¢ (⁄a) ̆(a p)
a ¿ p ¢ (⁄a) Ò p

True ¿ b ¢ b
False ¿ p ¢ False

(a ¿ b) ¯ (b ¿ a) ¢ (a › b)
((a ¿ b) ¯ (b ¿ c)) fi (a ¿ c)

if b then p else q fi ¢ (b p) ˘ (⁄b q)
 if b then p else q fi ¢ (b ¿ p) ¯ (⁄b ¿ q)
 if b then p fi ¢ if b then p else True fi

if b then a else a fi ¢ a
if b then x else x fi ¢ x

if a then b else c fi ¢ if ⁄a then c else b fi

(if b then p1 else q1 fi) ¯ (if b then p2 else q2 fi)

¢ (if b then (p1 ¯ p2) else (q1 ¯ q2) fi)

if b then (if b then p else q fi) else r fi ¢ if b then p else r fi

if b1 then p else (if b2 then p else q fi) fi ¢ if (b1 ˘ b2) then p else q fi

 if p q then a else (if p then b else c fi) fi
¢ if p then (if q then a else b fi) else c fi

f (if b then x else y fi) ¢ if b then f (x) else f (y) fi

z = (if b then x else y fi) ¢ if b then (z = x) else (z = y) fi

g(w, if b then x else y fi) ¢ if b then g(w, x) else g(w, y) fi

478 Constructing Correct Software

A.1.3 Integers

Type/Class

values (–{.., –2, –1, 0, 1, 2, ,...}), (–{ 0, 1, 2, ,...}),
operations:

0 —
1 —

 + —
– —

 – —
 * —
 ÷ —
≤ —

 < —

 = —

≥ —

 > —
≠ —

rules: (¬a,b,c,d:) a + 0 ¢ a
a + b ¢ b + a

(a + b) + c ¢ a + (b + c)

a + –a ¢ 0

a – b ¢ a + (–b)

a * 1 ¢ a
a * (b + c) ¢ (a * b) + (a * c)

a * b ¢ b * a
a * (b * c) ¢ (a * b) * c

a * 0 ¢ 0
¬(a = 0) a*b = a*c ¢ b = c

(a * b) = 0 fi (a = 0) ˘ (b = 0)

¬(b = 0) (a ÷ b) = c ¢ (∃d:)(a = (b * c) + d
¯ ((0 ≤ d ¯ d < b)

 ˘(b < d ¯ d ≤ 0)))

a ≤ a (¢ True)
a ≤ a + 1(¢ True)
a < a + 1 (¢ True)

(0 ≤ a ¯ 0 ≤ b) 0 ≤ (a + b) (¢ True)
(0 ≤ a ¯ 0 ≤ b) 0 ≤ (a*b) (¢ True)

Appendix 479

a ≤ b ¢ 0 ≤ (b – a)
a < b ¢ 0 < (b – a)
a = b ¢ (a ≤ b) ¯ (b ≤ a)
a ≥ b ¢ b ≤ a
a < b ¢ (a ≤ b) ¯ (a ≠ b)
a > b ¢ b < a
a ≠ b ¢ ⁄(a = b)

a ≤ b ¯ b ≤ c fi a ≤ c (¢ True)
a ≤ b ¢ a + c ≤ b + c

a ≤ b ¯ c ≤ d fi a + c ≤ b + d (¢ True)
(0 < c) a ≤ b ¢ a * c ≤ b * c
(d < 0) a ≤ b ¢ a * d ≥ b * d

(a = b) a ¢ b

A.1.4 Sets

Type/Class Generic Sets
(¬X::Type) (¬Y::Type)

values X, (X), (Y), (X Ù Y),
operations:

Ø — (X)
{X} — (X)

X ˜ (X) —
X μ (X) —

(X) Ë (X) — (X)
(X) fl (X) — (X)

(X) \ (X) — (X)
(X) ª (X) — (strict subset)
(X) · (X) —

(X) ˜ ((X)) —
(X) º (X) — (strict superset)
(X) ‚ (X) — (superset)

(X) = (X) —
(X) ≠ (X) —

(X) — (size of a finite set)

(X) Ù (Y) — (X Ù Y)

rules: (¬x,y:X,A,B,C: (X),D,E: (X))
x ˜ Ø ¢ False

x ˜ {y} ¢ x = y
x ˜ (A fl B) ¢ (x ˜ A) ¯ (x ˜ B)
x ˜ (A Ë B) ¢ (x ˜ A) ˘ (x ˜ B)

480 Constructing Correct Software

x ˜ (A \ B) ¢ (x ˜ A) ¯ (x μ B)
(x μ A) ¢ ⁄(x ˜ A)

A Ë B ¢ B Ë A
A Ë A ¢ A

A Ë (B Ë C) ¢ (A Ë B) Ë C
A Ë Ø ¢ A

A Ë (X \ A) ¢ X
A Ë X ¢ X

A fl B ¢ B fl A
A fl A ¢ A

A fl (B fl C) ¢ (A fl B) fl C
A fl X ¢ A

A fl (X \ A) ¢ Ø
A fl Ø ¢ Ø
(X \ X) ¢ Ø
(X \ Ø) ¢ X

X \ (X \ A) ¢ A

A fl (B Ë C) ¢ (A fl B) Ë (A fl C)
A Ë (B fl C) ¢ (A Ë B) fl (A Ë C)

A Ë (A fl B) ¢ A
A fl (A Ë B) ¢ A

X \ (A fl B) ¢ (X \ A) Ë (X \ B)
X \ (A Ë B) ¢ (X \ A) fl (X \ B)

A · B ¢ (∀x:X)((x ˜ A) fi (x ˜ B))
(A · B) (x ˜ A) fi (x ˜ B)

A ‚ B ¢ B · A
A · B ¢ A ˜ (B)
A · B ¢ (X \ B) · (X \ A)

(A · B) (A fl C) · (B fl C)
(A · B) (A Ë C) · (B Ë C)
(A · B) A Ù C · B Ù C etc.
(A · B) C Ù A · C Ù B etc.

A = B ¢ A · B ¯ B · A
A ≠ B ¢ ⁄(A = B)

Appendix 481

A ª B ¢ A · B ¯ B ≠ A
A º B ¢ B ª A

A · A
A · B ¯ B · C fi A · C

(A = B) A ¢ B
(A · B) A fl B ¢ A
(A · B) A Ë B ¢ B

#Ø ¢ 0
#{x} ¢ 1

#D + #E ¢ #(D Ë E) + #(D fl E)

A.1.5 Bags

Type/Class Generic Bags
(¬X::Type)
values X, (X), ,
operations:

Ø — (X)
ÊXÁ — (X)

(X) È (X) — (X)
(X) fl (X) — (X)

(X) \ (X) — (X)
(X) · (X) —

(X) = (X) —
 # (X) —

X# (X) —
min(,) —

minus —
X ˜ (X) —
X μ (X) —

rules: (¬x,y:X,m,n: ,A,B,C: (X))
x#Ø ¢ 0

x#ÊyÁ ¢ if x = y then 1 else 0 fi
x#(B ÈC) ¢ (x#B) + (x#C)

x ˜ B ¢ (x#B > 0)
x μ B ¢ (x#B = 0)

#Ø ¢ 0
#ÊyÁ ¢ 1

#(B ÈC) ¢ #B + #C

482 Constructing Correct Software

x#(BflC) ¢ min(x#B, x#C)
x#(B \ C) ¢ (x#B) minus (x#C)

m minus n ¢ if n ≤ m then m – n else 0 fi
min(m,n) ¢ if n ≤ m then n else m fi

x ˜ A ¢ (x#A) > 0

A · B ¢ (∀x:X)((x#A) ≤ (x#B))
(A · B) (x#A) ≤ (x#B)

A = B ¢ ∀x:X)((x#A) = (x#B))
(A = B) (x#A) = (x#B)
(A = B) A ¢ B

A È B ¢ B ÈA
A È Ø ¢ A

(A È B) È C ¢ A È (B ÈC)

A fl B ¢ B fl A
A fl A ¢ A
A fl Ø ¢ Ø

(A fl B) fl C ¢ A fl (B fl C)

 (A È B) fl (A È C) ¢ A È (B fl C)

A.1.6 Lists

Type/Class Generic lists
(¬X::Type)
values X, X*, ,
operations:

”’ — X*
”X’ — X*

X*» X* — X*
#X* —

X in X* —

X* is_empty —
X* is_atomic —

first_of(X*) — X
rest_of(X*) — X*
last_of(X*) — X

front_of(X*) — X*

X* = X* —

Appendix 483

rules: (¬x,y:X, L,M,N,A,B,C,D:X*,p:X —)

(L»M)»N ¢ L»(M»N)
L»” ’¢ L
” ’»L ¢ L

#”’¢ 0
#”x’ ¢ 1

#(L»M) ¢ #L + #M
#L = 0 ¢ L = ”’

x in ”’¢ False
x in ”y’ ¢ x = y
x in L»M ¢ x in L ˘ x in M

”’ is_empty ¢ True
”x’ is_empty ¢ False
L»M is_empty ¢ L is_empty ¯ M is_empty

L is_atomic ¢ (∃z:X)(L = ”z’)

⁄(L = ”’) L ¢ ”first_of(L)’»rest_of(L)
⁄(L = ”’) L ¢ front_of(L)»”last_of(L)’
⁄(L = ”’) #L ¢ 1 + #rest_of(L)

”’ = ”’¢ True
”’ = ”x’»L ¢ False

⁄(L = ”’) ¯⁄(M = ”’) L = M ¢ first_of(L) = first_of(M)
¯ rest_of(L) = rest_of(M)

L = M ¢ M = L

(L = M) L ¢ M

(∀x:X)((x in L»M) fi p(x)) ¢ (∀x:X)(x in L fi p(x))

¯ (∀x:X)(x in M fi p(x))

(∀x:X)((x in L»M)) ¢ (∀x:X)(x in L) ¯ (∀x:X)(x in M)

(A»B = C»D ¯ #A = #C) B ¢ D
(A»B = C»D ¯ #B = #D) A ¢ C
(A = B ¯ C = D) A»C ¢ B»D

484 Constructing Correct Software

A.1 7 Common Conversion Functions

Type/Class
(¬X::Type,Y::Type)
values X, (X), (X), (X), (Y),X*, ,
operations: “ :” —

 “ (X):” (X) — (X)
“ (X):” (X) — (X)
“ (Y):” (X) — (Y)

“ (X):” X* — (X)
min(,) —
max(,) —

rules: (¬a,b: , x:X, m,n: , A,B: (X), C,D: (X), L,M:X*)

“ :” True ¢ 1
“ :” False ¢ 0
“ :” a ¯ b ¢ min(“ :” a , “ :” b)
“ :” a ˘ b ¢ max(“ :” a , “ :” b)

min(m,n) ¢ if n ≤ m then n else m fi
max(m,n) ¢ if n ≤ m then m else n fi

“ (X):” Ø : (X) ¢ Ø : (X)
“ (X):” {x} : (X) ¢ {x} : (X)

“ (X):” A Ë B : (X) ¢ “ (X):” A : (X) Ë “ (X):” B : (X)

“ (X):” Ø : (X) ¢ Ø : (X) (¢ ÊÁ)
“ (X):” {x} : (X) ¢ ÊxÁ

 (“ (X):” A Ë B : (X)) È (“ (X):” A fl B : (X))
¢ (“ (X):” A : (X)) È (“ (X):” B : (X))

(X · Y) “ (Y):” Ø : (X) ¢ Ø : (Y)
(X · Y) “ (Y):” {x} : (X) ¢ {x} : (Y)
(X · Y) “ (Y):” C Ë D : (X) ¢ “ (Y):” C : (X) Ë “ (Y):” D : (X)

“ (X):” ”’ ¢ Ø (¢ ÊÁ)
“ (X):” ”x’ ¢ ÊxÁ

“ (X):” L»M ¢ “ (X):” L È“ (X):” M

Appendix 485

A.1.8 Quantifier rules

(¬X::Type,¬Y::Type)(Y Y — Y, f:X—Y, s:X— , p:X—)
Trading rules:

(¯p | x:X | s) ¢ (¯(s fi p) | x:X | True)
(˘p | x:X | s) ¢ (˘(s ¯ p) | x:X | True)

(¯p | x:X | s) ¢ (∀x:X)(s fi p)

(˘p | x:X | s) ¢ (∃x:X)(s ¯ p)

(∀x:X)(p) ¢ (¯p | x:X | True)

(∃x:X)(p) ¢ (˘p | x:X | True)

Empty base: (f(x) | | False) ¢ e

(¯p(x) | x:X | False) ¢ True

(∀x:X)(False fi p(x)) ¢ True

(˘p(x) | x:X | False) ¢ False

(∃x:X)(False ¯ p(x)) ¢ False

One-point rules:
(x \ E)2 (f (x) | | x= E) ¢ f (x)[x æ E]3

 ¢ f (E)

(¯p(x) | | x=E) ¢ p(E)

(∀x:X)((x = E) fi p(x)) ¢ p(E)

(˘p(x) | | x=E) ¢ p(E)

(∃x:X)((x=E) ¯ p(x)) ¢ p(E)

Re-distribution:
If g:X—Y, and (f g)(x) – f (x) g(x), then

 (f | | s) (g | | s) ¢ ((f g) | | s)

 (¯p | | s) ¯ (¯q | | s) ¢ (¯(s fi (p¯q)) | | True)

(∀x:X)(s fi p) ¯ (∀x:X)(s fi q) ¢ (∀x:X)(s fi (p ¯ q))

2 That is, “x is not (free for substitution) in E ”. See Section A.3 in the Appendix for a fuller
explanation.
3 f(x)[x æ E] – ¬x.f(x) (E), f(x) with x replaced by E.

486 Constructing Correct Software

(∀x:X)(p) ¯ (∀x:X)(q) ¢ (∀x:X)(p ¯ q)
 (˘p | | s) ˘ (˘q | | s) ¢ (˘(s ¯ (p˘q)) | | True)

(∃x:X)(s ¯ p) ˘ (∃x:X)(s ¯ q) ¢ (∃x:X)(s ¯ (p˘q))

(∃x:X)(p) ˘ (∃x:X)(q) ¢ (∃x:X)(p˘q)

Base split:
If r:X— , then

(f | | r¯s) (f | | r˘s) ¢ (f | | r) (f | | s)

(¯p | | r¯s) ¯ (¯p | | r˘s) ¢ (¯p | | r) ¯ (¯p | | s)

 (∀x:X)((r¯s) fi p) ¯ (∀x:X)((r˘s) fi p)

¢ (∀x:X)(r fi p) ¯ (∀x:X)(s fi p)

(˘p | | r¯s) ˘ (˘p | | r˘s) ¢ (˘p | | r) ˘ (˘p | | s)

 (∃x:X)((r¯s) ¯ p) ˘ (∃x:X)((r˘s) ¯ p)

¢ (∃x:X)(r ¯ p) ˘ (∃x:X)((s ¯ p)

Nesting:
If g:X2—Y and u:X2—

(g(x,y) | x,y:X | s(x)¯u(x,y)) ¢ ((g(x,y) | y:X | u(x,y)) | x:X | s(x))

(y \ s) (g | x,y:X | s¯u) ¢ ((g | y:X | u) | x:X | s)
(y \ s) (¯p | x,y:X | s¯u) ¢ (¯ (¯p | y:X | u) | x:X | s)

(y \ s) (∀x,y:X)((s¯u) fi p) ¢ (∀x:X)(s fi (∀y:X)(u fi p))

(y \ s) (˘p | x,y:X | s¯u) ¢ (˘ (˘p | y:X | u) | x:X | s)

(y \ s) (∃x,y:X)(s ¯ u ¯ p) ¢ (∃x:X)(s ¯ (∃y:X)(u ¯ p))

(y \ s) (∃x,y:X)(s ¯ u) ¢ (∃x:X)(s ¯ (∃y:X)(u))

Interchange of dummy variables:

(y \ r), (x \ s)
 ((g(x,y) | y:X | s(y)) | x:X | r (x))

¢ ((g(x,y) | x:X | r (x)) | y:X | s(y))

(y \ r), (x \ s)
((g | y:X | s) | x:X | r) ¢ ((g | x:X | r) | y:X | s)

Appendix 487

(y \ r), (x \ s)
(¯ (¯p | y:X | s) | x:X | r) ¢ (¯(¯p | x:X | r) | y:X | s)

(y \ r), (x \ s)

(∀x:X)(r fi (∀y:X)(s fi p)) ¢ (∀y:X)(s fi (∀x:X)(r fi p))

(y \ r), (x \ s)
(˘ (˘p | y:X | s) | x:X | r) ¢ (˘(˘p | x:X | r) | y:X | s)

(y \ r), (x \ s)

(∃x:X)(r ¯ (∃y:X)(s ¯ p)) ¢ (∃y:X)(s ¯ (∃x:X)(r ¯ p))

(y \ r), (x \ s) (∃x:X)(r ¯ (∃y:X)(s)) ¢ (∃y:X)(s ¯ (∃x:X)(r))

Re-naming:

(y \ f(x) and s(x)), (x \ f(y) and s(y))
(f(x) | x:X | s(x)) ¢ (f(y) | y:X | s(y))

(y \ f(x) and s(x)), (x \ f(y) and s(y))
(¯p(x) | x:X | s(x)) ¢ (¯p(y) | y:X | s(y))

(y \ f(x) and s(x)), (x \ f(y) and s(y))

(∀x:X)(s(x) fi p(x)) ¢ (∀x:X)(s(x) fi p(x))

(y \ f(x) and s(x)), (x \ f(y) and s(y))
(˘p(x) | x:X | s(x)) ¢ (˘p(y) | y:X | s(y))

(y \ f(x) and s(x)), (x \ f(y) and s(y))

(∃x:X)(s(x) ¯ p(x)) ¢ (∃y:X)(s(y) ¯ p(y))

(y \ p(x)), (x \ p(y)) (∃x:X)(p(x)) ¢ (∃y:X)(p(y))

Distributivity:

(x \ p) p ˘(¯q | x:X | r) ¢ (¯ (p ˘ q) | x:X | r)

(x \ p) p ˘ (∀x:X)(r(x) fi q(x)) ¢ (∀x:X)(r(x) fi (p ˘ q(x)))

(x \ p) p ¯(˘q | x:X | r) ¢ (˘ (p ¯ q) | x:X | r)

(x \ p) p ¯ (∃x:X)(r(x) ¯ q(x)) ¢ (∃x:X)(p ¯ r(x) ¯ q(x))

(x \ p) p ˘ (∀x:X)(q(x)) ¢ (∀x:X)(p ˘ q(x))

(x \ p) p ¯ (∃x:X)(q(x)) ¢ (∃x:X)(p ¯ q(x))

488 Constructing Correct Software

DeMorgan’s Laws:

⁄(˘p | x:X | r) ¢ (¯⁄p | x:X | r)

⁄(∃x:X)(p ¯ r) ¢ (∀x:X)(r fi ⁄p)

⁄(∃x:X)(p) ¢ (∀x:X)(⁄p)

Monotonicity:

(¯ (q fi p) | x:X | r) (¯q | x:X | r) fi (¯p | x:X | r)

(∀x:X)(r fi (q fi p)) (∀x:X)(r fi q) fi (∀x:X)(r fi p)

(¯ (q fip) | | r) (˘q | x:X | r) fi (˘p | x:X | r)

(¯ (q fip) | | r) (∃x:X)(r ¯ q) fi (∃x:X)(r ¯ p)

(∀x:X)(r fi (q fi p)) (∀x:X)(r fi q) fi (∀x:X)(r fi p) (¢ True)

(∀x:X)(r fi (q fi p)) (∃x:X)(r ¯ q) fi (∃x:X)(r ¯ p) (¢ True)

(∀x:X)(r fi (q fi p)) fi ((∀x:X)(r fi q) fi (∀x:X)(r fi p))

(∀x:X)(r fi (q fi p)) fi ((∃x:X)(r ¯ q) fi (∃x:X)(r ¯ p))

Appendix 489

A.2 Quantifier Properties

Of all the properties which might be possessed by operations, three are of special
importance since they are characteristic properties of quantifiers. Suppose that we
have an infix binary operator acting on type T. The three properties are that
has an identity (let’s call it e) that is commutative, and most importantly that

is associative. Notice how associativity effectively rotates the tree.

(e_is_id_for()) – (∀x:T) x e = x ¯ e x = x
(is_comm()) – (∀x,y:T) x y = y x
(is_assoc()) – (∀x,y,z:T) (x y) z = x (y z)

These give rise to the obvious manipulation rules as depicted in Figure A1.

yx

z
¢

¢

ex

x

x y xy

¢

x e ¢ x

x

y z

x y ¢ y x

(x y) z ¢ x (y z)

Figure A1

490 Constructing Correct Software

A.3 ‘Not Occurs in’

The predicate (x \ p), spoken as “x does not occur in p”, is used as a condition in
many transformation rules to indicate that the name x does not occur as a free
variable within the expression p. A full definition based on the possible syntactic
form for p could be given — but it is not really necessary. Put simply, if x is not
used within the expression (that defines) p then x \ p ¢ True. The only apparent
exception to this is when x is used as a bound variable within p.

That is, x \ (∃x:X)(q (x)) ¢ True

Here, the x in ‘∃x:X’ is a new x, and since

(∃x:X)(q (x)) ¢ (∃y:X)(q (y))
we have

x \ (∃y:X)(q (y)) ¢ True

the validity of which is easier to appreciate.

Other constructs which use bound variables include:

(∀x:X)(...)
(¬x:X)(...)
{ x:X | ... }
(.... | x:X | ...)

and begin var x:X; ... end — or (var x:X; ...).

Appendix 491

A.4 On PDL Structure

A PDL program consists of a sequence of (function) declarations followed by a
sequence of statements, separated by semicolons.

Typically, the declaration of a function f of type X — Y is of the form

f (x [:X]) – [deliver Y:] begin var w:W;
...

[result æ] expression
end

The segments in [...] brackets can be omitted, and (...) can be used instead of
begin ... end.

Alternatively — and more properly but less commonly — we can write

f – (¬x [:X]) ([deliver Y:] begin ... end).

The formal syntax4, given in BNF, is as follows:

”PROG’ ::= ”BLOCK’

”BLOCK’5 ::= begin ”DECS’ ; ”STMTS’ end |
begin ”STMTS’ end

”DECS’ ::= ”DEC’ ; ”DECS’ |
”DEC’

”DEC’ ::= var ”IDENTS’ : ”TYPE’ |
”IDENT’ (”IDENTS’) – ”EXP’ |
”IDENT’ (”IDENTS’) – (”EXP’) |
”IDENT’ (”IDENTS’) – ”BLOCK’ |
”IDENT’ – ”BLOCK’6 |
var ”IDENT’ [”TYPES’] : ”TYPE’

”IDENTS’ ::= ”IDENT’ , ”IDENTS’ |
”IDENT’

”IDENT’ ::= a string of letters, digits and the symbol “_”, starting with a letter

4 Of most of the PDL language.
5 And we can use “(...)” instead of “begin ... end”.
6 Or any statement except a ‘goto’ statement or a compond statement containing a ‘goto’ statement.

492 Constructing Correct Software

”TYPES’ ::= ”TYPE’ , ”TYPES’ |
”TYPE’

”TYPE’ ::= the type indicators given in Chapter 1.

”STMTS’ ::= ”STMT’ ; ”STMTS’ |
”STMT’

”STMT’ ::= ”IDENT’ : ”STMT’ |
”BLOCK’ |
”STMT’ « ”STMT’ |
skip |
”IDENT’ æ ”EXP’ |
”IDENT’ [”EXPS’] æ ”EXP’ |
”IDENTS’ æ ”EXPS’ |
if ”EXP’ then ”STMT’ else ”STMT’ fi |
if ”EXP’ then ”STMT’ fi |
if ”EXP’ then ”STMT’ else_if
”EXP’ then ”STMT’ else ”STMT’ fi |

while ”EXP’ do ”STMT’ od |
repeat ”STMT’ until ”EXP’ |
goto ”IDENT’ |
result æ ”EXP’ |
”IDENT’ (”EXPS’) |
”IDENT’

”EXPS’ ::= ”EXP’ , ”EXPS’ |
”EXP’

”EXP’ ::= ”IDENT’ (”EXPS’) |
if ”EXP’ then ”EXP’ else ”EXP’ fi |
”EXP’ where: ”EXP’ |
if ”EXP’ then ”EXP’
 else_if ”EXP’ then ”EXP’ else ”EXP’ fi |
”CAST’: ”EXP’ |
any well-formed expression using the types defined in Chapter 1

”CAST’ ::= ”TYPE’

Appendix 493

We also have comments and assertions. These may be placed before or after
statements.

”COMMENT’ ::= any sequence of characters (other than quotation marks)
delimited by “ and ”

”ASSERTION’ ::= “$” ”EXP’ “$” |
“$” “assert” ”EXP’ “$”

A.4.1 Scope and Parameters

‘Variables’ referenced within a block but not declared within that block are those
declared within the smallest surrounding block. Within function and procedure
calls, that block is a block surrounding the call rather than the declaration. Notice
also that parameters are passed by value and are therefore constants which cannot be
changed within a function or procedure.

494 Constructing Correct Software

A.5 PDL Transformation Rules

Here follows a collection of rules for transforming PDL code.

Of course, all the names used within these rules can be changed by making
appropriate substitutions, but, so as to keep the presentation simple, in most cases
we have not included explicit parameterizations.

” x1, x2, ... , xn ’ æ ” e1, e2, ... , en ’

¢
t1 æ e1;

t2 æ e2;

...
tn æ en;

x1 æ t1;

x2 æ t2;

....
xn æ tn

(x \ b) x æ a ;

x æ b
¢

x æ b

x æ y;
z æ exp(x)

¢
x æ y;
z æ exp(y)

((y \ a) ¯ (x \ b))

x æ a ;
y æ b

¢
y æ b;
x æ a

Appendix 495

S ; skip
¢

S

skip; S

¢
S

(y \ p) if p then y æ a ;S
else y æ a ;T fi

¢
y æ a ; if p then S

else T fi

if p then S else T fi
¢

if ⁄p then T else S fi

if p then S;T else Q;T fi
¢

if p then S else Q fi;T

y æ (if p
then g
else h fi)

¢
if p then y æ g

else y æ h fi

if p then while p do S od fi

¢
while p do S od

if p then repeat S until ⁄p fi

¢
while p do S od

496 Constructing Correct Software

repeat S until p
¢

S; while ⁄p do S od

loop pull back:

while p(f(x))
do x æ f(x) od:
x æ f(x)

¢
while p(x)
do x æ f(x) od

(W ≡ while B do C od; D)
W ¢ if B then C; W else D fi

(W ≡ if B then C; W else D fi)
W ¢ while B do C od; D

begin var x ...
S;
x æ a

end
¢

begin var x ...
S

end

(v ≠ X)7

v æ v ¢ skip

7 Where v: X Ë { X} and X denotes a declared but, as yet, unassigned X value. All our types
should have a domain structure that includes such an element. But we have avoided including this
minor complication since such values should not occur in any ‘proper’ program synthesis.

Appendix 497

Removal of tail recursion:

¬X:: Type,Y:: Type)
 (¬f: X—Y) (¬p: X—) (¬g: X—Y) (¬h: X—X)
 (∀x:X)(pre-f(x) fi (f(x) = if p(x) then g(x) else f(h(x)) fi))
 (pre-f(x))

 (∃n:) (p(hn(x)))

y æ f(x) ¢ begin var v: X;
v æ x;
while ⁄p(v)

do v æ h(v)
od;

y æ g(v)
end

Removal of associative recursion:

(¬X:: Type,Y:: Type)
 (¬f:X—Y) (¬p:X—) (¬g:X—Y) (¬k:X — X) (¬ :X — Y) (¬h:YÙY — Y)
 (∀x:X)(pre-f(x) fi (f(x) = if p(x) then g(x) else h(f(k(x)), (x)) fi)))
 (∀a,b,c:Y) (h(a, h(b, c)) = h(h(a, b), c)
 (pre-f(x))

 (∃n:) (p(kn(x)))

y æ f(x) ¢ begin var a:X, b:Y;
if p(x)
then y æ g(x)
else begin var a:X, b:Y;

”a, b’ æ ”k(x), (x)’;
while ⁄p(a)

do ”a, b’ æ ” k(a), h((a), b) ’ od;
y æ h(g(a), b)
end

fi
end

498 Constructing Correct Software

Associative recursion with identity:

(¬X::Type,Y::Type)
 (¬f:X—Y) (¬p:X—) (¬g:X—Y) (¬k:X — X) (¬ :X — Y) (¬h:YÙY — Y)
 (∀x:X)(f(x) = if p(x) then g(x) else h(f(k(x)), (x)) fi)
 (∀a,b,c:Y) (h(a, h(b, c)) = h(h(a,b), c)
 (∃e:Y)(∀y:Y)(h(y,e) = y ¯ h(e,y) = y)

 (∃n:) (p(kn(x)))

y æ f(x) ¢ begin var a :X,b:Y;
”a,b’ æ ”x,e’;
while ⁄p(a)

do ”a,b’æ”k(a), h((a),b)’ od;
y æ h(g(a),b)

end

Appendix 499

Bibliography

Baber, R L, Error-Free Software, Wiley, Chichester, England (1991).
Translated from the German edition dated 1990.

Backhouse, R C, Program Construction and Verification,
Prentice-Hall, Englewood Cliffs, NJ (1986).

Backhouse, R C, Program Construction, Wiley, Chichester, England (2003).

Dahl, O-J, Verifiable Programming,
Prentice-Hall, Englewood Cliffs, NJ ((1992).

Dijkstra, E W, A Discipline of Programming,
Prentice-Hall, Englewood Cliffs, NJ ((1976).

Dijkstra, E W and Feijen, W H J, A Method of Programming,
Addison-Wesley, Reading, MA (1988).

Gries, D, The Science of Programming, Springer-Verlag, New York (1981).

Gries, D and Schneider, F B, A Logical Approach to Discrete Math(s),
Springer-Verlag, New York (1994).

Hehner, E C R, A Practical Theory of Programming,
Springer-Verlag, New York (1993).

Jones, C B, Software Development: A Rigorous Approach,
Prentice-Hall, Englewood Cliffs, NJ ((1980).

Jones, C B, Systematic Software Development using VDM, 2nd edition,
Prentice-Hall, Englewood Cliffs, NJ ((1990).

Kaldewaij, A, Programming: The Derivation of Algorithms,
Prentice-Hall, Englewood Cliffs, NJ ((1990).

Morgan, C, Programming from Specifications, 3rd edition available from
 http://web.comlab.ox.ac.uk/oucl/publications/books/PfS/

Partsch, H A, Specification and Transformation of Programs,
Springer-Verlag, Heidelberg (1990).

Stone, R G and Cooke, D J, Program Construction, CUP, Cambridge (1987).

Windeknecht, T G, Logical Derivation of Computer Programs,
Intellect, Exeter (1999).

502 Constructing Correct Software

Index

absorption 68
abstraction 203, 205
action 457
actual parameter 58
additive inverse 98
algorithm extraction 161ff
(for) all, ∀ 56
alternation 147, 149
analogy 203
and, ¯ 66
and then, 46
array subscript 134
assertions 139
assignment command 137, 140
associative recursion 238
associativity 46, 52, 67, 181, 273, 277
atom 104

bag
bag of X , (X) 101ff, 482ff
intersection, fl 101
number of instances of x in (bag) b,

x#b 102
size, #b 102
sub-bag, · 102
union, È 101

base 292
base split rule 295, 487

beacon 465
binary relation 37
Boolean quantifiers 76
Boolean type, 40, 66ff, 71, 475ff
bound variable 76

bubble sort 378

Cartesian product, X Ù Y 38
cast 95, 108, 111
changes (of state) 31, 224, 455, 457
checking 172
cocktail shaker sort 382
coercion, see cast
combine 272
command 128

proper 228
comments 139
communication 459
commutativity 52, 67, 273
complement 69

uniqueness 69
composite values 268

derived 270
(functional) composition, g f 45
compositionality 456
concatenation 104
condition 269
conditional 132
conditional and, 78
conditional expressions 83

with arbitrary types 89
conditional implication, ¿ 82
conditional or, Ò 78
conditional rule 54
conjunctive form 115
consistency 305
contextual correctness 154
conventional communications 463

convergence 164, 236
conversion functions 485
convex hull 418
correctness 302

contextual 154
partial 151
relative 154
total 150

correctness theorem 162

dash 458
data

refinement 357
structures 357
types 61
types and transformations 114

data-flow diagram 326
de Morgan’s Law 93, 303, 489
declaration, a is a quantity of type X,

a:X 15
definition, – 15

(problem) decomposition 182
decoration 458
deduction 72
(is) defined to be, – 39

(program) derivation 154
derived composite values 270
design

program 155
refinement 305
re-using 310
tactics 169

detected failure 409
deterministic 163, 306
(program) development 277
difference 56, 92
digraph 425
disabled 457
(re-) distribution rule 294
distributivity 67, 92, 298, 488
divide and conquer 169
divides, | (local usage) 15

does not occur in, \ 117
domain of a function or binary relation

43
domain partitioning 202
domain rule 148
down recursion 249
(interchange of) dummy variables 297

, extended set of truth values
56, 78ff, 477ff

(is an) element of, ˜ 38
(is not an) element of, μ 39
else_if 109
embedded conditional expressions 86
empty base quantifier rule 293, 486
empty set, Ø 92
enabling 457, 459, 466
equality test 55
(flowchart) equation 232
equational reasoning 51
equivalence 72

strong 225
eureka process 206
exchange sorts 375
existential 116
existential quantifier 44
(there) exists, ∃ 44
explicit 163
(tree representation of an) expression 63
extended (3-valued) logic, 78
extremal problems 439

factorization 68
(tactic) failure 409
failures in structural splitting 411
False 40, 66
file 108
finite subsets of X, (X) 93
first_of 104
flowchart 128

equation 232
program 130

504 Index

folding 57, 118, 164
for all, ∀ 56
formal parameter 58
front_of 104
function 35, 43

conversion functions 485
functional composition, f of g,

f over g, g f 45

list functions f*, f+ 271
total function 47
type transfer functions 111
1-place functions 270, 278
2-place functions 272, 280

functional 163

get input 458
giving 464
go-on, “;” 132
graph 46

of a function 46

height (of a tree) 371

(specification of) I/O 457
idempotent 70
identity 273, 280
if

(else_) if 109
if and only if, iff, › 48, 72
if ... then ... else ... fi 46, 83
if x:A then ... 109
if ... then ... fi 86

implication, implies, fi 72
improving 324
“in” 104
independent 170
indices 363
induced operations 110
induction 187, 326

structural 327
inequalities 99
infix operator 62

insertion sort 384, 388
instantiation 59, 203
(re-) instantiation 205
integers, integer type, 19, 51, 61,

62, 96ff, 479ff
division 101
positive, 97

interactive software 455
interchange of dummy variables

297, 487-8
interrupt 459
intersection, fl 92
(additive) inverse 98
involution 70
iteration 147, 150
(speeding up) iterations 257

join 140

key 108, 318

lambda notation 57, 59
last_of 104
leaf node 371
let 138
LFP 14, 127, 164

list functions, f*, f+ 271
list operations 103, 483-4

list types X* and X+ 103ff, 110, 483-4
liveness 457, 469
locus of control 128
Logic, Functions, Procedures, see LFP
logical types 66

extended (3-valued) logic, 78
logical-functional-procedural, see LFP
looking 464
(while) loop 228
loop pull-back 286
loss of vital information 412

maplet, Ÿ 43
mapping 47, 272

Index 505

measure 165
of problem size 176

merge sorts 383
minimal 389

mixed strategies 201
Modus Ponens 74
monotonicity 299, 489
multiplication 98

natural numbers, 15, 97
negate 98
negative 52, 63
nesting rule 296, 487
non-determinism 301

non-empty X lists, X+ 105
not, ⁄ 66
not an element of, μ 39
(does) “not occur in” 117, 491
n-tuple 107
null rules 68
number of instances of x in (bag) b,

x#b 102

object-oriented programming 206
one-point rule 294, 486
operational refinement 302
or, ˘ 66
ordered pair 38
or else, Ò 78
orthogonal 170

parameter 139
actual 58
formal 58
passing by value 139

parameterisation 204, 206
parameterless procedure 208
partial correctness 151
partition sort 390
partitioning 333

domain 203
PDL 4, 134

PDL (continued)
syntax 492ff
transformations 495ff

pivot 349, 402
positive integers, 97
post-check 132
post-condition 140
post-fix operator 60
powerset, (X) 41, 92
pre-check 132
pre-condition 139

weakest, wp 45
predicate 40
predicated splitting 201, 333
pre-fix operator 60
prenex normal form 291
prime 458
priority 469
problem

decomposition 182
reduction 176, 323
(measure of) size 176

procedural programming 127
procedures 455

parameterless 208
recursive 262

(eureka) process 206
program

derivation 154
design 155
development 277
flowchart 130

Program Design Language, see PDL
programming 125

object-oriented 206
proper command 228
(constructive) proof 171
proof obligation 147

quantifier 116, 267ff, 273
Boolean 76
empty base rule 293
existential 44

506 Index

quantifier (continued)
logical quantifier rules 298
one-point rule 294
properties 490
rules 291, 486ff
universal 56

Quicksort 403, 404

range 44
rule 149

rational numbers, 107
rationalisation 115
rationalise 194
real numbers, 107
record 32, 107, 108
recursion 164ff, 223ff

associative 238
down 249
introduction 163
procedures 262
removal 163, 223
tail 225, 228
up 249

re-distribution rule 294
reduce 165, 307
reduction 236, 309

problem 175, 323
refine 306, 307
refinement 172, 301ff

data 357
design 305
operational 302
strict 309

reflexivity 54
reify 307
re-instantiation 205
re-naming rule 297, 488
repeat ... until ... 132
requirements 455, 467
rest_of 104
re-use 206, 301
re-using designs 310
re-write rules 59

robustness 1, 7, 139, 411, 418
root 371
rules

base split 295
conditional 54
conditional on a definition 56
domain 148
empty base 293, 486
logical quantifier 298
nesting 296, 487
one-point 294, 486
quantification 291, 486ff
range 149
re-distribution 294, 486-7
renaming 297, 488
rewrite 54
trading rules 486

safety 467, 469
(is the) same as, ¢ 51
same (type and) value 55
scope 116, 139
selection sort 401
selector 292
set(s), (X) 91, 480ff
set difference, \ 56
set notation 39
(set of finite) sets, (X) 93, 94
sequencing 147
sequential and, 78
sequential implication, ¿ 82
sequential or, Ò 78
showing 464
(unexpected) side effects 128

signature 62
singleton, atom 104
size (= count), # 165
size of bag b, #b 102
(measure of problem) size 176
skip 229
sort(ing algorithm)s 317ff, 375ff

basic merge 347

Index 507

Sorts (continued)
bubble 378
cocktail shaker 382
exchange 341, 375
insertion 384, 388
merge 347, 383
minimal merge 389
partition 337, 348, 390
selection 401

source of a (binary) relation or function
41

specification 37, 41, 47
of I/O 457

specifying systems 469
speeding up iterations 257
splitting

predicated 201, 333
structural 185, 326

state 458
state changes 143, 224
statement, command 128
(mixed) strategies 201
strong equivalence 225
structural induction 327
structural splitting 185, 326

failures 411
structured program 132, 145, 147
stuttering 468
sub-bag 102
sub-program 131
sub-range, x..y 20, 110
subset, ª, · 38, 91
substitution 57

type 59
subtraction 98
sub-types 110
such that, | 39
symmetric 54
systems 466

tactic failure 409
tail recursion 225, 228
taking 464

target of a (binary) relation or function
41

term 269
termination 165, 236
test 140
(A) to B, function type 40
tolerances 456
topological sort 424
total correctness 150
total function, mapping 47
trace sequences 226
trading 292
trading rules 486
transfine 161
transformations 473ff
transitive 53
translation 203
tree 371

representation of an expression 63
True 40, 66
(n-) tuple 107
types

(A) to B, function type 40
(X), see bags
, see Boolean

data type 61
, see extended logic
(X), see finite sets

function type 40

list types X* and X+ 110
, see natural numbers
, see positive integers
(X), see power sets
, see rationals
, see real numbers

sub-type 110
substitution 59
transfer functions 111
(variant) enquiry 109
union 109
(x is of) type X, x:X 39

, see integers

508 Index

Undefined value (of type) 56, 78, 465
unexpected side effects 128
unfolding 164
union, Ë 92
union types 109
uniqueness of complements 69
universal quantifier, ∀ 56, 116
Unknown value 78
up recursion 249

values
composite 268
derived composite values 270

variables
interchange of dummy variables

297, 487-8
quoted 270

verification 145, 146
(loss of) vital information 412

weakest pre-condition, wp 45, 307
well-ordering 152
where 138
while ... do ... od 132
while loop 228
widen 112
wider (problem) 412
wp, see weakest pre-condition
(re-) write rule 54

, see integers

Index 509

